首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20164篇
  免费   2276篇
  国内免费   2173篇
电工技术   749篇
综合类   1198篇
化学工业   4230篇
金属工艺   1668篇
机械仪表   732篇
建筑科学   132篇
矿业工程   228篇
能源动力   855篇
轻工业   370篇
水利工程   27篇
石油天然气   230篇
武器工业   136篇
无线电   5958篇
一般工业技术   4895篇
冶金工业   1466篇
原子能技术   210篇
自动化技术   1529篇
  2024年   65篇
  2023年   431篇
  2022年   486篇
  2021年   620篇
  2020年   676篇
  2019年   645篇
  2018年   570篇
  2017年   777篇
  2016年   769篇
  2015年   867篇
  2014年   1107篇
  2013年   1235篇
  2012年   1437篇
  2011年   1527篇
  2010年   1002篇
  2009年   1226篇
  2008年   1066篇
  2007年   1218篇
  2006年   1247篇
  2005年   1070篇
  2004年   950篇
  2003年   897篇
  2002年   770篇
  2001年   629篇
  2000年   676篇
  1999年   411篇
  1998年   341篇
  1997年   297篇
  1996年   252篇
  1995年   223篇
  1994年   184篇
  1993年   153篇
  1992年   151篇
  1991年   142篇
  1990年   167篇
  1989年   151篇
  1988年   33篇
  1987年   18篇
  1986年   11篇
  1985年   9篇
  1984年   16篇
  1983年   9篇
  1982年   14篇
  1981年   10篇
  1980年   8篇
  1979年   15篇
  1978年   7篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 718 毫秒
1.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
2.
Eco-friendly quantum dots (QDs) can be termed green QDs which stand as an attractive choice to modify the properties of known semiconductors in the direction of getting efficient photoelectrodes for solar-induced photoelectrochemical (PEC) splitting of water, due to their peculiar properties. Thus, it is of high significance to analyze their merit/demerit as an effective scaffold in PEC cell. QDs are known for their excellent optical properties however, the coupling of green QDs with semiconductor is not only useful in improving absorption characteristics but also promotes charge transfer. This review has undertaken the critical analysis on the worldwide research going on the green QDs modified photoelectrode with respect to their optical, electrical & photoelectrochemical properties, role, usefulness, efficiency, and finally the success in PEC system for hydrogen production. Various methods on the facile synthesis & sensitization techniques of green QDs available in the literature have also been discussed. Further, recent advances on the development of green QDs based photo-electrode, along with major challenges of using green QDs in this field have also been presented.  相似文献   
3.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
4.
A new technique of EDM coring of single crystal silicon carbide (SiC) ingot was proposed in this paper. Currently single crystal SiC devices are still of high cost due to the high cost of bulk crystal SiC material and the difficulty in the fabrication process of SiC. In the manufacturing process of SiC ingot/wafer, localized cracks or defects occasionally occur due to thermal or mechanical causes resulted from fabrication processes which may waste the whole piece of material. To save the part of ingot without defects and maximize the material utilization, the authors proposed EDM coring method to cut out a no defect ingot from a larger diameter ingot which has localized defects. A special experimental setup was developed for EDM coring of SiC ingot in this study and its feasibility and machining performance were investigated. Meanwhile, in order to improve the machining rate, a novel multi-discharge EDM coring method by electrostatic induction feeding was established, which can realize multiple discharges in single pulse duration. Experimental results make it clear that EDM coring of SiC ingot can be carried out stably using the developed experimental setup. Taking advantage of the newly developed multi-discharge EDM method, both the machining speed and surface integrity can be improved.  相似文献   
5.
Within the framework of the effective-mass approximation and the dipole approximation, considering the three-dimensional confinement of the electron and hole and the strong built-in electric field(BEF) in strained wurtzite Zn O/Mg0:25Zn0:75O quantum dots(QDs), the optical properties of ionized donor-bound excitons(D+, X)are investigated theoretically using a variational method. The computations are performed in the case of finite band offset. Numerical results indicate that the optical properties of(D+, X) complexes sensitively depend on the donor position, the QD size and the BEF. The binding energy of(D+, X) complexes is larger when the donor is located in the vicinity of the left interface of the QDs, and it decreases with increasing QD size. The oscillator strength reduces with an increase in the dot height and increases with an increase in the dot radius. Furthermore, when the QD size decreases, the absorption peak intensity shows a marked increment, and the absorption coefficient peak has a blueshift. The strong BEF causes a redshift of the absorption coefficient peak and causes the absorption peak intensity to decrease remarkably. The physical reasons for these relationships have been analyzed in depth.  相似文献   
6.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
7.
In this study we analyze the optoelectronic properties and structural characterization of hydrogenated polymorphous silicon thin films as a function of the deposition parameters. The films were grown by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of argon (Ar), hydrogen (H2) and dichlorosilane (SiH2Cl2). High-resolution transmission electron microscopy images and Raman measurements confirmed the existence of very different internal structures (crystalline fractions from 12% to 54%) depending on the growth parameters. Variations of as much as one order of magnitude were observed in both the photoconductivity and effective absorption coefficient between the samples deposited with different dichlorosilane/hydrogen flow rate ratios. The optical and transport properties of these films depend strongly on their structural characteristics, in particular the average size and densities of silicon nanocrystals embedded in the amorphous silicon matrix. From these results we propose an intrinsic polymorphous silicon bandgap grading thin film to be applied in a p–i–n junction solar cell structure. The different parts of the solar cell structure were proposed based on the experimental optoelectronic properties of the pm-Si:H thin films studied in this work.  相似文献   
8.
9.
研究了受外场驱动的两个二能级系统分别与两个单模量子化光场相互作用模型中纠缠演化及转移问题。该工作主要是对外场驱动的Landau-Zener模型进行了研究,采用旋转波近似的方法,通过数值计算详细分析了二能级系统初始状态、能级间的耦合常数以及驱动外场的参数对子系统间纠缠和转移特性的影响。结果表明,适当调节模型中的参数,可以使系统初始纠缠完全转移为光腔场间的纠缠,实现二能级系统与光场间的最大纠缠转移。  相似文献   
10.
Rectangular section control technology(RSCT)was introduced to achieve high-precision profile control during silicon steel rolling.The RSCT principle and method were designed,and the whole RSCT control strategy was developed.Specifically,RSCT included roll contour design,rolling technology optimization,and control strategy development,aiming at both hot strip mills(HSMs)and cold strip mills(CSMs).Firstly,through the high-performance variable crown(HVC)work roll optimization design in the upper-stream stands and the limited shifting technology for schedule-free rolling in the downstream stands of HSMs,a hot strip with a stable crown and limited wedge,local spot,and single wave was obtained,which was suitable for cold rolling.Secondly,an approximately rectangular section was obtained by edge varying contact(EVC)work roll contour design,edge-drop setting control,and closed loop control in the upper-stream stands of CSMs.Moreover,complex-mode flatness control was realized by coordinating multiple shape-control methods in the downstream stands of CSMs.In addition,the RSCT approach was applied in several silicon-steel production plants,where an outstanding performance and remarkable economic benefits were observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号