首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3252篇
  免费   166篇
  国内免费   335篇
电工技术   61篇
综合类   289篇
化学工业   996篇
金属工艺   787篇
机械仪表   72篇
建筑科学   122篇
矿业工程   60篇
能源动力   13篇
轻工业   81篇
水利工程   5篇
石油天然气   10篇
武器工业   18篇
无线电   257篇
一般工业技术   591篇
冶金工业   377篇
原子能技术   11篇
自动化技术   3篇
  2024年   6篇
  2023年   61篇
  2022年   68篇
  2021年   77篇
  2020年   65篇
  2019年   55篇
  2018年   37篇
  2017年   52篇
  2016年   55篇
  2015年   72篇
  2014年   122篇
  2013年   96篇
  2012年   127篇
  2011年   114篇
  2010年   131篇
  2009年   159篇
  2008年   202篇
  2007年   248篇
  2006年   247篇
  2005年   192篇
  2004年   263篇
  2003年   164篇
  2002年   154篇
  2001年   114篇
  2000年   120篇
  1999年   84篇
  1998年   91篇
  1997年   86篇
  1996年   83篇
  1995年   94篇
  1994年   77篇
  1993年   65篇
  1992年   51篇
  1991年   43篇
  1990年   42篇
  1989年   25篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
排序方式: 共有3753条查询结果,搜索用时 0 毫秒
911.
1 Introduction Since INOUE et al[1,2] reported that amorphousalloy with the composition of Mg65Cu25Y10 could beproduced with thickness up to 4 mm by conventionamold casting technique, Mg-based bulk metallic glasses(BMGs) have been proposed as a new kind …  相似文献   
912.
Graphite and Al2O3 short fibers reinforced Mg-Al-Zn alloy hybrid composites were fabricated by perform squeeze-infiltration route. The effects of the volume of graphite particles on the microstructure, mechanical properties and tr/bological behavior were investigated under the conditions of constant size of graphite particle and volume of Al2O3 short fiber. The results reveal that the uniform distribution of the reinforced graphite particles and Al2O3 short fiber can be obtained by this technique, and they have strong bonding with the metal matrix. Increasing graphite volume results in decrease in hardness, the ultimate tensile strength whereas the Al2O3 short fiber makes contribution to the increase in hardness of the composite. The composite exhibits good wear resistance, small wear mass loss and low coefficient of friction as compared with the metal matrix. The wear mechanisms transit from oxidation wear, abrasion wear into delamination wear as the applied load is increased, and a film of lubricant covering almost entire surface of specimen, is found to be formed, which separates the wear surfaces from metal to metal contact and thus improves the tribological properties.  相似文献   
913.
A boundary layer model was used to investigate the convection effects on phase and microstructure selection in directionally solidified peritectic alloy. Due to the convection effects, the steady-state compositions of one phase at interface corresponding to an initial composition reduce, which causes its steady-state point moves upward along its solidus line and the compositional range is not consistent with the band cycle in banding. A criterion of critical interface temperature was put forward to determine whether a phase entered steady-state growth or not. Furtherly by equivalent transformation, the equivalent solidus lines and subsequent equivalent phase diagram were derived for peritectic solidification with convection. Using this equivalent phase diagram, a phase and microstructure selection map is built for a peritectic alloy with convection effect, which shows that the compositional range for banding reduces, and moves to the hyperperitectic region, and also the coupled growth region of both solids comparing with purely-diffusive limit. The predicted map for directionally solidified Pb-Bi alloy agrees well with its experimental observations.  相似文献   
914.
A modified cellular automaton (MCA) model has been extended to the ternary alloy system by coupling thermodynamic and phase equilibrium calculation engine PanEngine. In the present model the dendrite growth is driven by the difference between the local equilibrium liquidus temperature and local actual temperature, incorporating the effect of curvature. The local equilibrium liquidus temperature is calculated with PanEngine according to the local liquid concentrations of two solutes, which are determined by numerically solving the species transport equation in the domain. Model validation was carried out through the comparison of the simulated values to the prediction of the Scheil model for solute profiles in the primary dendrites. The simulated data with zero solid diffusivity and limited liquid diffusivity were increasingly close to the Scheil profiles as the solidification rate decreased. The simulated microstructure and microsegregation in an Al-Cu-Mg ternary alloy were compared with those obtained experimentally.  相似文献   
915.
The microstructure and mechanical properties of AZ80 alloy were investigated during thermal processing. The samples of 4 mm in thickness machined from cast ingot were compressed at 300℃ with a thickness reduction of 75% and cooled in the water to room temperature. Then ageing(T5) and solution+ageing (T6) treatments were employed respectively. The results show that mechanical properties are significantly improved after thermal processing than those of as-cast AZ80 alloy due to grain refinement and discontinuous precipitates. The heat treatment has significant influence on microstructural evolution for sample formed at moderate temperature. Microstructural evaluation indicates that the β-phase increases because of sufficient solution and the alloy is strengthened evidently.  相似文献   
916.
Experimental investigations on the DC spot welding of Mg alloy AZ31B are presented. Experiments are carried out to study the influence of spot welding parameters ( electrode force, welding heat input and welding time) on the tensile shear load and the diameter of nugget, based on an orthogonal test and analysis method. The optimum parameters are as follows: electrode force is 2 000 N, welding heat input is 80% and welding time is 6 cycles. The microstrueture of spot weld is single fine equiaxed crystals in the nugget, of which the structure is β-Mg17Al12 precipitated on α-Mg boundaries induced by nonequilibrium freezing. And the surface condition of the workpiece has great influence on the joint quality.  相似文献   
917.
1 Introduction Magnesium alloy exhibits light mass, high specific strength and stiffness. Therefore, extensive application of magnesium alloys to various automobile parts is expected to enhance fuel efficiency through mass reduction. However, the unsatisf…  相似文献   
918.
采用透射电子显微镜(TEM)研究了两相钛合金Ti-700在不同热处理制度下的显微组织和相结构.探讨了固溶温度,冷却方式以及时效处理对显微结构的影响.结果表明,在所选择的热处理制度下,合金为双态组织,除了基体(α β)外,还发现了α2相以及调质结构.这些析出物对Ti-700钛合金的性能有一定影响.  相似文献   
919.
热压烧结AlN陶瓷   总被引:1,自引:0,他引:1  
以自蔓延高温合成(SHS)的AlN粉体为原料,以Y203-B20O-CaF2和YF3-B-CaF2系为烧结助剂,采用热压烧结工艺制备AIN陶瓷.结果表明,采用烧结助剂,在1750℃、压力为35 MPa、保温2 h的烧结条件下,可获得相对密度均98.8%、热导率为95W/(m·K)的AIN烧结体.通过对AlN试样断口的SEM分析可知AlN晶粒大多呈直接结合,晶界相较少,有少量气孔存在.对AlN陶瓷进行后续热处理可提高其热导率,这主要是由于后续热处理后AlN陶瓷的晶界比较干净、AlN晶粒间呈直接结合而晶界相呈孤岛状分布.  相似文献   
920.
The morphology, size and composition of intermetallic compound at the interface of AI 1050 and nodular cast iron were studied by electron microprobe analysis(EMPA) and scan electron microscopy (SEM), respectively. The bond strength of the interface was measured by the tensile tests and the morphology of the fracture surface was observed by SEM. The observation of the interface reveals that there are two distinct morphologies: no interrnetallic compound exists in the central area at the interface; while numbers of intermetallic compounds (FexAly) are formed in the peripheral area due to the overfull heat input. The tensile tests indicate that the distribution of strength in radial direction at the interface is irdaomogeneous, and the central area of the interface performs greater bond strength than the peripheral area, which proves directly that the FexAly intermetallic compounds have a negative effect on the integration of interface. The morphology on the fracture surface shows that the facture in the central area at the interface has characteristic of the ductile micro-void facture. So it is important to restrain the form of the intermetallic compound to increase the bond strength of the AI 1050 and nodular cast iron by optimizing welding parameters and the geometry of components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号