全文获取类型
收费全文 | 1395篇 |
免费 | 296篇 |
国内免费 | 217篇 |
专业分类
电工技术 | 63篇 |
综合类 | 173篇 |
化学工业 | 23篇 |
金属工艺 | 4篇 |
机械仪表 | 103篇 |
建筑科学 | 159篇 |
矿业工程 | 32篇 |
能源动力 | 11篇 |
轻工业 | 24篇 |
水利工程 | 8篇 |
石油天然气 | 5篇 |
武器工业 | 4篇 |
无线电 | 348篇 |
一般工业技术 | 73篇 |
冶金工业 | 7篇 |
原子能技术 | 1篇 |
自动化技术 | 870篇 |
出版年
2024年 | 96篇 |
2023年 | 182篇 |
2022年 | 216篇 |
2021年 | 202篇 |
2020年 | 182篇 |
2019年 | 147篇 |
2018年 | 85篇 |
2017年 | 96篇 |
2016年 | 83篇 |
2015年 | 69篇 |
2014年 | 100篇 |
2013年 | 68篇 |
2012年 | 77篇 |
2011年 | 57篇 |
2010年 | 39篇 |
2009年 | 58篇 |
2008年 | 38篇 |
2007年 | 28篇 |
2006年 | 20篇 |
2005年 | 27篇 |
2004年 | 11篇 |
2003年 | 6篇 |
2002年 | 3篇 |
2000年 | 9篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
排序方式: 共有1908条查询结果,搜索用时 15 毫秒
41.
面向构建24小时全时段视频监控系统的需要,基于可见光与近红外的跨模态行人重识别受到工业界与学术界的广泛关注.然而,目前大部分跨模态行人重识别任务都试图利用在ImageNet上预训练的模型来提前学习模态内共性特征,但ImageNet与跨模态行人数据模态差异较大,且预训练过程中将颜色信息作为判别特征之一,导致预训练中学习到的共性特征并不适用于无色彩红外图像的信息表示.本文提出了一种基于灾难性遗忘及组合叠加擦除的自监督跨模态行人重识别预训练方法,首先利用提出的灾难性遗忘评分来对预训练数据进行筛选,旨在减小预训练数据与后续任务数据存在的域间差距,进一步减少模型训练时间.其次,针对传统跨模态识别中的关键区分性特征提取,本文设计了一种强通道数据增强策略,通过对R、G、B三通道的通道级擦除与组合,生成了颜色迥异的多类型样本,有利于促使模型关注于纹理信息而非颜色信息.最后基于本文提出的跨模态数据筛选指标以及通道增强策略,构建了跨模态任务的自监督学习框架.实验结果表明,本文提出的预训练方法所训练的ResNet50网络在迁移到众多跨模态行人重识别方法时优于目前主流自监督预训练方法,其中在经典方法 AGW的... 相似文献
42.
地铁场景行人目标存在大小不一、不同程度遮挡以及环境过暗导致目标模糊等问题,很大程度影响了行人目标检测的准确性。针对上述问题,本研究提出了一种改进YOLOv5s目标检测算法以增强地铁场景行人目标检测的效果。构建地铁场景行人数据集,标注对应标签,进行数据预处理操作。本研究在特征提取模块中加入深度残差收缩网络,将残差网络、注意力机制和软阈值化函数相结合以增强有用特征信道,削弱冗余特征信道;利用改进空洞空间金字塔池化模块,在不丢失图像信息的前提下获得多尺度、多感受野的融合特征,有效捕获图像全局上下文信息;设计了一种改进非极大值抑制算法,对目标预测框进行后处理,保留检测目标最优预测框。实验结果表明:提出的改进YOLOv5s算法能有效提高地铁场景行人目标检测的精度,尤其对小行人目标和密集行人目标的检测,效果提升更为显著。 相似文献
43.
随着视频监控设备的广泛应用,行人再识别成为智能视频监控中的关键任务,具有广阔的应用前景。该文提出一种基于深度分解网络前景提取和映射模型学习的行人再识别算法。首先利用DDN模型对行人图像进行前景分割,然后提取前景图像的颜色直方图特征和原图像的Gabor纹理特征,利用提取的行人特征,学习不同摄像机之间的交叉映射模型,最后通过学习的映射模型将查寻集和候选集中的行人特征变换到一个特征分布较为一致的空间中,进行距离度量和排序。实验证明该算法能够提取较为鲁棒的行人特征,可克服背景干扰问题,行人再识别匹配率得到有效的提高。 相似文献
44.
45.
无监督跨域行人重识别旨在使有标签源域数据集上训练的模型适应目标域数据集。然而,基于聚类的无监督跨域行人重识别算法在网络特征学习过程中常因输入行人图片情况各异而产生噪声,从而影响聚类效果。针对这一问题,提出一种基于语义融合的域内相似性分组行人重识别网络,首先在Baseline网络的基础上添加语义融合层,依次从空间和通道2个方面对中间特征图进行相似特征的语义融合,从而提升网络的自适应感知能力。此外,通过充分利用域内相似性细粒度信息,进而提高网络对全局和局部特征的聚类精准度。通过在DukeMTMC-ReID、Market1501和MSMT17这3个公开数据集上进行实验,结果表明,所提算法的均值平均精度(m AP)和Rank识别准确率与近年无监督跨域行人重识别算法相比有显著提升。 相似文献
46.
为解决行人重识别场景中图像背景噪声对行人特征提取的干扰问题,本文提出了一种基于区域生成网络(RPN)的行人重识别改进算法.使用RPN获取具有不同尺度信息的感兴趣区域(ROI),再通过感兴趣池化(ROI pooling)层实现ROI多尺度信息的协调统一,抑制了图像背景噪声对行人信息表征的影响;搭建了以全局特征、切块局部特... 相似文献
47.
针对于稀疏编码在行人检测问题中提取的特征维数高和不能够有效描述行人的问题,提出了一种基于多重稀疏字典直方图的特征提取方法。通过稀疏表示方法,预先学习多个不同稀疏度的字典,分别利用每一个字典对行人图像进行稀疏编码,统计每个字典中对应稀疏编码单元的分布直方图作为行人图像的特征描述子。该方法提取到的特征维数低,并且能够有效地描述行人,具有良好的检测性能。 相似文献
48.
49.
《现代电子技术》2019,(10):175-178
针对行人再识别过程中,光照、摄像机设置等因素影响行人图像颜色以及在提取图像特征时丢失部分图像细节的问题,提出一种基于重叠条纹特征融合的行人再识别方法。在提取特征前,对图像进行重叠条纹分割,对所分割的条纹提取HSV颜色直方图和Gabor纹理特征直方图,HSV颜色直方图可以增强图像颜色信息的鉴别性,而重叠条纹分割方法解决丢失图像细节问题,Gabor纹理特征对图像的边缘敏感,增加图像的细节信息,融合所提取的图像特征,形成特征描述子;然后用交叉视角逻辑度量学习算法进行识别;最后在VIPER和GRID图像库上进行实验,rank1分别达到了31.68%和16.32%,rank10和rank20也有明显提高。结果表明所提方法能够提高行人再识别的识别率。 相似文献
50.