全文获取类型
收费全文 | 1395篇 |
免费 | 296篇 |
国内免费 | 217篇 |
专业分类
电工技术 | 63篇 |
综合类 | 173篇 |
化学工业 | 23篇 |
金属工艺 | 4篇 |
机械仪表 | 103篇 |
建筑科学 | 159篇 |
矿业工程 | 32篇 |
能源动力 | 11篇 |
轻工业 | 24篇 |
水利工程 | 8篇 |
石油天然气 | 5篇 |
武器工业 | 4篇 |
无线电 | 348篇 |
一般工业技术 | 73篇 |
冶金工业 | 7篇 |
原子能技术 | 1篇 |
自动化技术 | 870篇 |
出版年
2024年 | 96篇 |
2023年 | 182篇 |
2022年 | 216篇 |
2021年 | 202篇 |
2020年 | 182篇 |
2019年 | 147篇 |
2018年 | 85篇 |
2017年 | 96篇 |
2016年 | 83篇 |
2015年 | 69篇 |
2014年 | 100篇 |
2013年 | 68篇 |
2012年 | 77篇 |
2011年 | 57篇 |
2010年 | 39篇 |
2009年 | 58篇 |
2008年 | 38篇 |
2007年 | 28篇 |
2006年 | 20篇 |
2005年 | 27篇 |
2004年 | 11篇 |
2003年 | 6篇 |
2002年 | 3篇 |
2000年 | 9篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
排序方式: 共有1908条查询结果,搜索用时 15 毫秒
991.
为提高全天候复杂光线条件下高清视频监控系统中遗留物检测的实时性、准确性和鲁棒性,提出全天候复杂光线条件下的遗留物实时检测方法。采用快速的混合高斯模型算法对视频图像进行背景建模,分别建立一个长周期背景模型和一个短周期背景模型,通过当前视频帧分别与两个背景模型差分运算,得到长周期前景和短周期前景;对长周期前景和短周期前景进行分析,检测标记出遗留物,进行报警。实验结果表明,该方法能有效检测出复杂光线条件下的遗留物,具有较高的实时性和准确性。 相似文献
992.
针对目前浅层分类方法存在训练样本数量过大和拟合复杂函数能力较弱等不足,提出一种改进的基于深信度网络分类算法的行人检测方法。首先,通过搭建带T分布函数显层节点的受限波兹曼机输入端改进深信度网络的输入方式,将行人特征提取信息通过输入端的显层结构转化为分类器可以识别的伯努利分布方式;其次,搭建多隐层受限波兹曼机中间层结构,实现隐层结构间的数据传递,保留关键信息。最后,利用BP神经网络搭建分类结构的输出端,实现分类误差信息反向传播并对分类结构的参数进行微调,不断优化分类器结构。实验证明,改进的深信度网络行人检测算法性能优于经典浅层分类算法,算法的检测速度也能满足使用要求。 相似文献
993.
针对现实场景下因受到摄像机视角变化、行人姿态变化、物体遮挡、图像低分辨率、行人图片未对齐等因素影响导致行人判别性特征难以获取的问题,设计混合池通道注意模块(HPCAM)和全像素空间注意力模块(FPSAM),并基于这两种注意力模块提出一种通道与空间双重注意力网络(CSDA-Net)。HPCAM模块能够在通道维度上抑制无用信息的干扰,增强显著性特征的表达,以提取得到判别性强的行人特征。FPSAM模块在空间维度上增强行人特征的判别能力,从而提高行人重识别的准确率。通过在传统行人重识别深度模型框架中分阶段融入HPCAM模块和FPSAM模块,获得由粗糙到细粒度的注意力特征。实验结果表明,CSDA-Net网络在行人重识别主流数据集CUHK03、DukeMTMC-ReID和Market1501上的Rank-1准确率分别为78.3%、91.3%和96.0%,平均精度均值(mAP)分别为80.0%、82.1%和90.4%,与MGN网络相比,Rank-1准确率分别提升14.9、2.6和0.3个百分点,mAP分别提升13.7、3.7和3.5个百分点,能够提取更具鲁棒性和判别性的表达特征。 相似文献
994.
为了解决行人重识别中行人特征表达不充分、忽视相邻区域的语义相关性等问题,提出了多尺度多特征融合的行人重识别模型.首先,通过多分支结构获取包含不同信息的特征图;其次,通过组合相邻的局部区域,强调局部特征之间的语义相关性;最后,结合最大池化和平均池化的优势,从不同的方向学习更加全面的特征信息.分别在Market-1501,DukeMTMC-reID以及MSMT17数据集上进行实验,结果表明,在光照不同、拍摄角度不同等环境下,文中模型的mAP分别达到了88.40%,78.50%,59.20%,能够有效地提取行人特征,识别精度较高. 相似文献
995.
《计算机应用与软件》2015,(10)
针对现有行人检测方法速度慢、无法满足实时性检测需求的缺点,提出一种基于边缘对称性和改进的等价局部二值模式的行人检测方法 ES-IULBP(Edge Symmetry and Improved Uniform Local Binary Patterns)。该方法首先对输入的图像进行垂直边缘提取并计算对称性,完成行人的初检测,确定行人候选区;然后引入等价局部二值模式,并对其改进,进行行人的纹理特征提取;最后结合线性支持向量机进行行人验证。实验结果表明,与基于梯度方向直方图特征的行人检测方法相比,ES-IULBP检测速度快、准确率高,并具有较强的鲁棒性。 相似文献
996.
997.
针对可变形部件模型(DPM)算法在行人检测领域中的检测精度高,但由于在特征提取和行人定位两步中的计算量过大,导致检测速度过慢而不能应用于实时行人检测的问题,提出了一种融合分支定界算法和级联检测算法的可变形部件模型(BBCDPM)算法。首先,选取梯度方向直方图(HOG)特征作为描述人体目标的特征,从而生成特征金字塔;然后,进行可变形部件模型的建模,并使用隐变量支持向量机(LSVM)对模型进行训练;同时,为了提高行人检测的准确度,将传统可变形部件模型算法中的5个部件模型增加到了8个;最后,在利用了级联检测算法简化检测模型的基础上,结合了分支定界算法寻找最大值,排除大量不可能的对象假设,完成对行人目标的定位和检测。在INRIA数据集上进行了实验,结果表明,与传统DPM算法相比,该算法将准确率提高了12个百分点,且大幅提高了行人检测与识别的速度。 相似文献
998.
提出一种基于广义霍夫变换的室外场景行人检测方法.首先从少量标注图片中随机地提取行人图像碎片构造碎片字典,然后使用图像碎片对每一幅训练图片计算特征向量.为了能够在静态图片中快速地检测行人,使用Gentleboost算法训练检测器,在每一次迭代时学习一个决策树桩弱分类器,该弱分类器可以从高维特征向量中选择一个当前区分度最好的碎片特征.在运行检测器时,所有的弱分类器在测试图片中对于行人的可能出现位置进行投票.最后,将各个弱分类器的投票结果进行叠加,并用设定的检测阈值剔除得分较低的检测结果后得到检测输出.在LabelMe数据集上的实验表明,该方法可以快速地在静态图片中检测出行人,需要较少的训练数据且有效地解决了部分遮挡问题. 相似文献
999.
1000.
行人重识别主要研究在不同摄像机拍摄的图形中检索目标行人的任务,是计算机视觉领域一个极具挑战性的研究课题.传统依赖手工特征的行人重识别方法性能低且鲁棒性差,不能适应数据爆炸增长的信息时代.近年来,随着大规模行人数据集的出现和深度学习的迅速发展,行人重识别研究取得了许多突出成果.梳理了性能接近饱和的有监督学习研究方法,并探... 相似文献