首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2330篇
  免费   100篇
  国内免费   106篇
电工技术   19篇
综合类   50篇
化学工业   585篇
金属工艺   218篇
机械仪表   540篇
建筑科学   14篇
矿业工程   11篇
能源动力   43篇
轻工业   101篇
石油天然气   26篇
武器工业   1篇
无线电   287篇
一般工业技术   554篇
冶金工业   8篇
原子能技术   33篇
自动化技术   46篇
  2024年   7篇
  2023年   5篇
  2022年   19篇
  2021年   30篇
  2020年   29篇
  2019年   37篇
  2018年   29篇
  2017年   47篇
  2016年   70篇
  2015年   67篇
  2014年   94篇
  2013年   184篇
  2012年   133篇
  2011年   209篇
  2010年   148篇
  2009年   196篇
  2008年   221篇
  2007年   177篇
  2006年   199篇
  2005年   126篇
  2004年   114篇
  2003年   106篇
  2002年   69篇
  2001年   51篇
  2000年   42篇
  1999年   50篇
  1998年   21篇
  1997年   14篇
  1996年   15篇
  1995年   13篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1988年   2篇
排序方式: 共有2536条查询结果,搜索用时 623 毫秒
131.
High‐intensity ultrasonication with a batch process was used to isolate fibrils from several cellulose sources, and a mixture of microscale and nanoscale fibrils was obtained. The geometrical characteristics of the fibrils were investigated with polarized light microscopy, scanning electron microscopy, and atomic force microscopy. The results show that small fibrils with diameters ranging from about 30 nm to several micrometers were peeled from the fibers. Some fibrils were isolated from the fibers, whereas some were still on the fiber surfaces. The lengths of untreated and treated cellulose fibers were investigated by a fiber size analyzer. The crystallinities of some cellulose fibers were evaluated by wide‐angle X‐ray diffraction and Fourier transform infrared spectroscopy. The high‐intensity ultrasonication technique is an environmentally benign method and a simplified process that conducts fiber isolation and chemical modification simultaneously and helps significantly reduce the production cost of cellulose nanofibers and their composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
132.
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set‐up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells. Microsc. Res. Tech. 76:357–363, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
133.
Nitrogen ions of 30 keV with different fluxes ranging from 5 × 1016 to 8 × 1017 ions/cm2 were implanted in Ti foil of 1.8 mm thickness. X-ray diffraction (XRD) was used to obtain the structural characteristics, while atomic force microscope (AFM) was employed to obtain the surface morphology of the samples. The potentiodynamic method was employed to obtain corrosion resistance of the samples in NaCl (3.5%) solution. Titanium nitride formation was enhanced with increasing the nitrogen ion flux, while grain size and surface roughness of the samples were also increased. Optimum corrosion resistance was obtained for 5 × 1016 (N+ ions/cm2).  相似文献   
134.
Plasma modification of polylactic acid in a medium pressure DBD   总被引:1,自引:0,他引:1  
In this paper, a dielectric barrier discharge (DBD) operating in different atmospheres (air, nitrogen, helium and argon) and at medium pressure is employed to modify the surface properties of polylactic acid (PLA). Chemical and physical changes on the plasma-treated surfaces are examined using contact angle, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements. Results show that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: air and argon plasmas introduce oxygen-containing groups, while nitrogen discharges add nitrogen groups to the PLA surface. Quite surprisingly, also helium plasmas incorporate a small amount of nitrogen-containing functionalities: this observation can however be explained by the fact that the helium discharge operates in the glow mode. In the near future, it will be examined whether the performed plasma treatments can enhance PLA cell attachment and proliferation, which might open the door to many interesting biomedical applications.  相似文献   
135.
136.
High-resolution x-ray diffraction (XRD) and atomic force microscopy (AFM) of pendeo-epitaxial (PE) GaN films confirmed transmission electron microscopy (TEM) results regarding the reduction in dislocations in the wings. Wing tilt ≤0.15° was due to tensile stresses in the stripes induced by thermal expansion mismatch between the GaN and the SiC substrate. A strong D°X peak at ≈3.466 eV (full-width half-maximum (FWHM) ≤300 μeV) was measured in the wing material. Films grown at 1020°C exhibited similar vertical [0001] and lateral [11 0] growth rates. Increasing the temperature increased the latter due to the higher thermal stability of the GaN(11 0). The (11 0) surface was atomically smooth under all growth conditions with a root mean square (RMS)=0.17 nm.  相似文献   
137.
利用原子力显微镜(AFM)对Fe-8Cr-1C合金{225}f马氏体的宏观形状应变特征进行了观察与定量分析.结果表明:{225}f片状马氏体宏观形状应变特征表现出与{3 10 15}f全孪晶马氏体不同的特征.{3 10 15}f全孪晶马氏体表面浮凸呈规则的"N"或""型;而{225}f片状马氏体表面浮凸呈不规则"N"型,其"浮凸群"既有均匀切变的特征,又有沿基面堆垛长大的痕迹,其浮凸高度、浮凸角远低于{3 10 15}f马氏体.  相似文献   
138.
针对原子力显微镜AFM(Atomic torce microscope)在轻敲工作模式下微悬臂在谐振频率附近振动的问题,依据振动学理论和仿真分析的方法,建立了微悬臂的振动模型,仿真出了微悬臂前几阶的振动模态。得到了在保证振幅不变的情况下微悬臂各参数与其自由端偏转角的关系,指出了轻敲模式下减小AFM测量误差的方法。  相似文献   
139.
Low-temperature (LT) buffer-layer techniques were employed to improve the crystalline quality of ZnO films grown by molecular-beam epitaxy (MBE). Photoluminescence (PL) spectra show that CdO, as a hetero-buffer layer with a rock-salt structure, does not improve the quality of ZnO film grown on top. However, by using ZnO as a homo-buffer layer, the crystalline quality can be greatly enhanced, as indicated by PL, atomic force microscopy (AFM), x-ray diffraction (XRD), and Raman scattering. Moreover, the buffer layer grown at 450°C is found to be the best template to further improve the quality of top ZnO film. The mechanisms behind this result are the strong interactions between point defects and threading dislocations in the ZnO buffer layer.  相似文献   
140.
The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications. The distance between cantilever tip and sample surface in non-contact AFM is a time-varying parameter even for a fixed sample height, and typically difficult to identify. A remedy to this problem is to directly identify the sample height in order to generate high-precision atomic-resolution images. For this, the microcantilever (which forms the basis for the operation of AFM) is modeled as a single mode approximation and the interaction between the sample and cantilever is derived from a van der Waals potential. Since in most practical applications only the microcantilever deflection is accessible, we will use merely this measurement to identify the sample height. In most non-contact AFMs, cantilevers with high-quality factors are employed essentially for acquiring high-resolution images. However, due to high-quality factor, the settling time is relatively large and the required time to achieve a periodic motion is long. As a result, identification methods based on amplitude and phase measurements cannot be efficiently utilized. The proposed method overcomes this shortfall by using a small fraction of the transient motion for parameter identification, so the scanning speed can be increased significantly. Furthermore, for acquiring atomic-scale images of atomically flat samples, the need for feedback loop to achieve setpoint amplitude is basically eliminated. On the other hand, for acquiring atomic-scale images of highly uneven samples, a simple PI controller is designed to track the desired constant sample height. Simulation results are provided to demonstrate the feasibility of the approach for both sample height identification and tracking the desired sample height.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号