首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186657篇
  免费   16839篇
  国内免费   13132篇
电工技术   6425篇
技术理论   3篇
综合类   11598篇
化学工业   50368篇
金属工艺   17027篇
机械仪表   8388篇
建筑科学   5264篇
矿业工程   4150篇
能源动力   6952篇
轻工业   12192篇
水利工程   2074篇
石油天然气   7139篇
武器工业   1181篇
无线电   22501篇
一般工业技术   29893篇
冶金工业   7325篇
原子能技术   2461篇
自动化技术   21687篇
  2024年   547篇
  2023年   3119篇
  2022年   4976篇
  2021年   7007篇
  2020年   5649篇
  2019年   5136篇
  2018年   4702篇
  2017年   5778篇
  2016年   6307篇
  2015年   6324篇
  2014年   9255篇
  2013年   10585篇
  2012年   12195篇
  2011年   15364篇
  2010年   11697篇
  2009年   13156篇
  2008年   11498篇
  2007年   13326篇
  2006年   12233篇
  2005年   9799篇
  2004年   8119篇
  2003年   7015篇
  2002年   5731篇
  2001年   4558篇
  2000年   4145篇
  1999年   3324篇
  1998年   2668篇
  1997年   2127篇
  1996年   1924篇
  1995年   1627篇
  1994年   1495篇
  1993年   1174篇
  1992年   902篇
  1991年   700篇
  1990年   551篇
  1989年   437篇
  1988年   280篇
  1987年   215篇
  1986年   198篇
  1985年   131篇
  1984年   103篇
  1983年   70篇
  1982年   89篇
  1981年   71篇
  1980年   70篇
  1979年   61篇
  1977年   27篇
  1976年   30篇
  1975年   25篇
  1974年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm−2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.  相似文献   
72.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
73.
74.
Effective thermal management of electronic integrated devices with high powder density has become a serious issue, which requires materials with high thermal conductivity (TC). In order to solve the problem of weak bonding between graphite and Cu, a novel Cu/graphite film/Cu sandwich composite (Cu/GF/Cu composite) with ultrahigh TC was fabricated by electro-deposition. The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electro-deposition. TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated. The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content, and the strong texture orientation of deposited Cu resulted in high TC. Under the optimizing preparing condition, the highest in-plane TC reached 824.3 W·m−1·K−1, while the ultimate tensile strength of this composite was about four times higher than that of the graphite film.  相似文献   
75.
Biosolids reduction model by return activated sludge ozonation was validated by simulating nitrification data compiled from our pilot-scale and the literature studies. Then, a global sensitivity analysis (GSA) was performed to identify influential and non-influential parameters for biosolids reduction efficiency, change in specific nitrification activity (SNA), and alteration to expected nitrification stability. In general, the model outputs were sensitive to operational and ozone reaction parameters, but not to biochemical parameters. For operational parameters, mainly temperature and initial solids retention time (SRT) influenced all model outputs. For biosolids reduction, increase in the degradability of the influent COD decreased the reduction efficiency. For SNA, the changes were highly dependent on the influent TKN/COD ratio. Our findings also imply that the stability of the nitrification process in ozonated systems should be enhanced at constant MLVSS for warm temperatures, but could be reduced at temperatures below 12 °C and aerated SRTs below 10 days.  相似文献   
76.
Pinhão seed is an unconventional source of starch and the pines grow up in native forests of southern Latin America. In this study, pinhão starch was adjusted at 15, 20 and 25% moisture content and heated to 100, 110 and 120 °C for 1 h. A decrease in λ max (starch/iodine complex) was observed as a result of increase in temperature and moisture content of HMT. The ratio of crystalline to amorphous phase in pinhão starch was determined via Fourier transform infra red by taking 1045/1022 band ratio. A decrease in crystallinity occurred as a result of HMT. Polarised light microscopy indicated a loss of birefringence of starch granules under 120 °C at 25% moisture content. Granule size distribution was further confirmed via scanning electron microscopy which showed the HMT effects. These results increased the understanding on molecular and structural properties of HMT pinhão starch and broadened its food and nonfood industrial applications.  相似文献   
77.
The viability and β‐galactosidase activity of four Lactobacillus strains in milk drink containing gums during 28 days of refrigerated storage at 4 °C were assessed. The population of Lactobacillus rhamnosus GGB101 and Lactobacillus rhamnosus GGB103 were maintained, whereas the population of Lactobacillus reuteri DSM20016 and Lactobacillus reuteri SD2112 significantly decreased. The recommended level of 6 log CFU g?1 was exceeded for all tested trains throughout storage. The highest viable number of Lactobacillus rhamnosus GGB103 (8.76 ± 0.03 log CFU mL?1) was obtained in the product containing carrageenan–maltodextrin. The addition of guar–locust bean–carrageenan led to 20‐fold increase in the level of β‐galactosidase activity for L. rhamnosus GGB101 (1208 ± 2.12 Miller units mL?1) compared to the control (61 ± 2.83 Miller units mL?1). Our results suggested that gums could be added to milk to improve viability and enhance β‐galactosidase activity of Lactobacillus.  相似文献   
78.
79.
80.
By mans of a chemical synthesis technique stoichiometric CdTe-nanocrystals thin films were prepared on glass substrates at 70 °C. First, Cd(OH)2 films were deposited on glass substrates, then these films were immersed in a growing solution prepared by dissolution of Te in hydroxymethane sulfinic acid to obtain CdTe. The structural analysis indicates that CdTe thin films have a zinc-blende structure. The average nanocrystal size was 19.4 nm and the thickness of the films 170 nm. The Raman characterization shows the presence of the longitudinal optical mode and their second order mode, which indicates a good crystalline quality. The optical transmittance was less than 5% in the visible region (400–700 nm). The compositional characterization indicates that CdTe films grew with Te excess.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号