首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27922篇
  免费   2273篇
  国内免费   1271篇
电工技术   872篇
综合类   875篇
化学工业   10282篇
金属工艺   2042篇
机械仪表   324篇
建筑科学   328篇
矿业工程   748篇
能源动力   3735篇
轻工业   679篇
水利工程   33篇
石油天然气   716篇
武器工业   36篇
无线电   2242篇
一般工业技术   5907篇
冶金工业   1904篇
原子能技术   330篇
自动化技术   413篇
  2024年   80篇
  2023年   637篇
  2022年   903篇
  2021年   1231篇
  2020年   1097篇
  2019年   1107篇
  2018年   1021篇
  2017年   1054篇
  2016年   943篇
  2015年   925篇
  2014年   1419篇
  2013年   1586篇
  2012年   1739篇
  2011年   2347篇
  2010年   1780篇
  2009年   1691篇
  2008年   1457篇
  2007年   1588篇
  2006年   1349篇
  2005年   1094篇
  2004年   941篇
  2003年   872篇
  2002年   744篇
  2001年   594篇
  2000年   612篇
  1999年   442篇
  1998年   377篇
  1997年   293篇
  1996年   273篇
  1995年   197篇
  1994年   188篇
  1993年   139篇
  1992年   160篇
  1991年   124篇
  1990年   111篇
  1989年   89篇
  1988年   52篇
  1987年   32篇
  1986年   15篇
  1985年   32篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   17篇
  1980年   12篇
  1979年   9篇
  1978年   4篇
  1977年   4篇
  1959年   5篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
Abstract

Nanocomposites of diphenylalanine (FF) and carbon based materials provide an opportunity to overcome drawbacks associated with using FF micro- and nanostructures in nanobiotechnology applications, in particular their poor structural stability in liquid solutions. In this study, FF/graphene oxide (GO) composites were found to self-assemble into layered micro- and nanostructures, which exhibited improved thermal and aqueous stability. Dependent on the FF/GO ratio, the solubility of these structures was reduced to 35.65% after 30 min as compared to 92.4% for pure FF samples. Such functional nanocomposites may extend the use of FF structures to e.g. biosensing, electrochemical, electromechanical or electronic applications.  相似文献   
992.
Abstract

In this work, the degradation of terephthalic acid (TA) by vanadium oxide (VxOy) supported on zinc oxide (ZnO) was evaluated in a photocatalytic ozonation treatment based on two UV-A LEDs distributions. TEM analysis and specific surface area measurement suggest that VxOy is not supported on ZnO, while the EDXRF and XPS analysis indicated the presence of VxOy. The XPS analysis on VxOy/ZnO catalyst showed non-significant surface change between fresh and used catalyst. However, ozone decomposition showed a higher reaction rate constant for catalytic (230%) and photocatalytic ozonation (310%) in comparison with single ozone treatment. Photocatalytic ozonation with central and external irradiation arrays was evaluated in TA elimination by a kinetic study. The irradiation arrays had not statistical differences in the TA decomposition or oxalic acid formation. These results suggest that the construction of central bodies inside the reactor could be not necessary for photocatalytic processes.  相似文献   
993.
This paper presents experimental and numerical studies on the fuel reforming process on an Ni/YSZ catalyst. Nickel is widely known as a catalyst material for Solid Oxide Fuel Cells. Because of its prices and catalytic properties, Ni is used in both electrodes and internal reforming reactors. To optimize the reforming reactors, detailed data about the entire reforming process is required. In the present paper kinetics of methane/steam reforming on the Ni/YSZ catalyst was experimentally investigated. Measurements including different thermal boundary conditions, the fuel flow rate and the steam-to-methane ratios were performed. The reforming rate equation derived from experimental data was used in the numerical model to predict synthetic gas composition at the outlet of the reformer.  相似文献   
994.
研究了90nmCMOS工艺下4nm超薄栅氧化层LDDnMOSFET中漏电压VD对栅调制产生电流‰的影响,随着VD的增加,IGD曲线上升沿不变,而下降沿向右漂移,这归因于VD增大引发了闽值电压增大所致。研究发现IGD下降沿最大跨导GMW随着VD的变化成幂指数关系:GMW=VDn,n=0.08。进一步发现电流上升沿与下降沿最大跨导所对应的栅电压VG差与VD成线性关系,斜率为1.19。文中给出了相关的物理机制。  相似文献   
995.
Over the past three decades, transparent high electron mobility molecular materials have attracted intensive research efforts for organic light-emitting diodes as electron-transport layer for the sake of low working voltage, high power efficiency and operational stability. However, developing high-performing electron-transport materials presents a demanding challenge owing to difficulties in synthesis, purification and/or processing. In this contribution, we show that n-doping a simple and facilely available phenanthroline derivative, namely 3-(6-diphenylphosphinylnaphth-2-yl)-1,10-phenanthroline Phen-NaDPO with a high Tg of 116 °C, is capable of greatly increasing the electron conductivity up to 3.3 × 10−4 S m−1. The characterization of the blue sky fluorescent and green phosphorescent OLEDs involving this doped electron-transport layer Phen-NaDPO:50% wt Cs2CO3 revealed comparable performances to the analogue BPhen (Tg ≈ 66 °C) OLEDs. For instance, the resulting sky blue fluorescent OLEDs provided ca. 15 cd/A, 13 lm/W @1000 cd m−2 & t95 ≈ 167 h @1000 cd m−2. The present finding shows that the doped Phen-NaDPO may be a robust electron-transport material for optoelectronics.  相似文献   
996.
Films of copper and cobalt-iron oxalates were prepared from suspensions of powders in ethane-1,2-diol deposited on glass or polycarbonate substrates. Two-dimensional structures of oxides, resolved on the scale of less than ten micrometers, were formed by laser insolation of these films, using a photolithography machine. The nature of the constitutive phases of the oxides formed tends to show that the laser heating makes it possible to reach locally, temperatures higher than 1000 °C. The oxides formed are thus sintered. The residual oxalate can be removed by washing or dissolving, leaving the oxide structure on its substrate. In spite of a perfectible sintering, the formed structures could interest different technological applications (electronic or magnetic devices, gas sensors, photovoltaic systems…) requiring the shaping of simple or mixed oxides on a scale close to the micrometer. The process of selective laser decomposition of oxalates, could subsequently be suitable for additive manufacturing of 3D parts.  相似文献   
997.
In this article, we report fabrication of 5 wt% of Dy as DyVO4 supported ZnO by template-free hydrothermal-thermal decomposition method and its photocatalytic activity towards degradation of azo dyes Rhodamine-B (Rh-B) and Trypan Blue (TB) in solar light, Electrocatalytic activity in methanol oxidation and Self-cleaning properties. The as prepared DyVO4-ZnO was characterized by surface analytical and spectroscopic techniques. The results suggested that Dysprosium vanadate doping on ZnO has increased its photocatalytic efficiency with high reusability. DyVO4-ZnO exhibits higher electrocatalytic activity than prepared ZnO for methanol electrooxidation in alkaline medium, revealing its promising potential as the anode in direct methanol fuel cells. Hydrophobicity of ZnO increases by doping of DyVO4.  相似文献   
998.
This article describes the preparation and characterization of composites containing poly(ethylene-co-butyl acrylate) (EBA–13 and EBA–28 with 13 and 28 wt % butyl acrylate, respectively) and 2–12 wt % (0.5–3 vol %) of aluminum oxide nanoparticles (two types differing in specific surface area and hydroxyl-group concentration; uncoated and coated with, respectively, octyltriethoxysilane and aminopropyltriethoxysilane). A greater surface coverage was obtained with aminopropyltriethoxysilane than with octyltriethoxysilane. An overall good dispersion was obtained in the EBA-13 composites prepared by extrusion compounding. Composites with octyltriethoxysilane-coated nanoparticles showed the best dispersion. The addition of the nanoparticles to EBA–28 resulted in poor dispersion, probably due to insufficiently high shear forces acting during extrusion mixing which were unable to break down nanoparticle agglomerates. The nanoparticles had no effect on the crystallization kinetics in the EBA–13 composites, but in the EBA–28 composites the presence of the nanoparticles led to an increase in the crystallization peak temperature, suggesting that the nanoparticles had a nucleating effect in this particular polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
999.
We review the use of two-dimensional psuedomorphic materials to accommodate an extraordinary range of misfit and allow novel new phases to be grown epitaxially. These materials assume the structure of the substrate and can thus be regarded as metamaterials. We illustrate these principles through a number of systems, including a detailed structural and spectroscopic study of epitaxial VO2/NiO heterostructures. In this case the metamaterial is VO1+x which is structurally and electronically distinct from the bulk of the VO2 film. In the transition region the crystal structure adopts that of the NiO layer, while the oxidation state of vanadium increases from ∼3+ to ∼4+ with thickness, accompanied by increasing lattice disorder. The formation and evolution of this interfacial phase, VO1+x, accommodates the change in crystal symmetry across the interface from the rock-salt structure of NiO to the rutile structure of VO2. The use of two-dimensional metamaterials opens a wealth of new opportunities for the growth of new materials with novel properties.  相似文献   
1000.
With an aim to combine the performance-enhancing properties of Ca with the stability-promoting properties of In in the swedenborgite YBaCo4O7+δ-based cathodes for solid oxide fuel cells (SOFC), cation-substituted Y1−xyInxCayBaCo3ZnO7+δ (0.2 ≤ (x + y) ≤ 0.5) oxides have been explored. All samples presented in this work are stable in air after 120 h exposure to 600, 700, and 800 °C. Increasing In content shows a negligible impact on polarization resistances (Rp), but causes an increase in the activation energies (Ea) of (Y,In,Ca)BaCo3ZnO7+δ + Gd0.2Ce0.8O1.9 (GDC) composite cathodes on 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte supported symmetric cells. Increasing Ca content shows a decrease in Rp and an increase in Ea on similar electrochemical cells. All (Y,In,Ca)BaCo3ZnO7+δ samples investigated here show superior performance compared to the unsubstituted YBaCo3ZnO7+δ + GDC cathode in the range of 400–800 °C. Especially, the Y0.5In0.1Ca0.4BaCo3ZnO7+δ + GDC composite cathode exhibits good performance on GDC electrolytes in the range of 400–600 °C. With superior phase stability and electrochemical performance, the (Y,In,Ca)BaCo3ZnO7+δ series of oxides are attractive cathode candidates for intermediate temperature SOFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号