首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39122篇
  免费   4159篇
  国内免费   2526篇
电工技术   867篇
综合类   1888篇
化学工业   9832篇
金属工艺   3546篇
机械仪表   1324篇
建筑科学   2300篇
矿业工程   745篇
能源动力   1510篇
轻工业   1472篇
水利工程   262篇
石油天然气   275篇
武器工业   479篇
无线电   4194篇
一般工业技术   14091篇
冶金工业   2004篇
原子能技术   377篇
自动化技术   641篇
  2024年   166篇
  2023年   996篇
  2022年   1089篇
  2021年   1511篇
  2020年   1730篇
  2019年   1495篇
  2018年   1374篇
  2017年   1499篇
  2016年   1381篇
  2015年   1393篇
  2014年   2054篇
  2013年   2265篇
  2012年   2387篇
  2011年   3218篇
  2010年   2296篇
  2009年   2453篇
  2008年   2215篇
  2007年   2529篇
  2006年   2249篇
  2005年   2090篇
  2004年   1670篇
  2003年   1506篇
  2002年   1221篇
  2001年   892篇
  2000年   816篇
  1999年   577篇
  1998年   558篇
  1997年   400篇
  1996年   315篇
  1995年   267篇
  1994年   253篇
  1993年   168篇
  1992年   143篇
  1991年   143篇
  1990年   128篇
  1989年   103篇
  1988年   52篇
  1987年   30篇
  1986年   28篇
  1985年   22篇
  1984年   34篇
  1983年   19篇
  1982年   28篇
  1981年   7篇
  1980年   10篇
  1979年   3篇
  1976年   3篇
  1963年   2篇
  1955年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
31.
The methanol‐to‐olefins reaction (MTO) was studied in a small‐scale fluidized‐bed reactor over synthesized silicoaluminophosphate (SAPO‐34) catalysts. Mesoporous nanocrystalline SAPO‐34 molecular sieves were synthesized hydrothermally by ultrasonic and microwave‐assisted aging processes in the presence of hexadecyltrimethylammonium bromide (CTAB) and tetradecyldimethyl(3‐trimethoxysilylpropyl)ammonium chloride (TPOAC) as surfactant agents. The Box‐Behnken experimental design method was applied to determine the optimum operating parameters of this process conducted in the fluidized‐bed reactor. The optimum conditions in terms of reaction temperature, ratio of inlet gas velocity to minimum fluidizing velocity, and MeOH weight fraction were evaluated.  相似文献   
32.
《Ceramics International》2015,41(6):7478-7488
Gas sensing characteristics of one-electrode sensors based on the In2O3 ceramics doped by gallium and phosphorus have been discussed. In2O3-based ceramic was prepared by sol–gel technology. Ozone, CO, CH4 and H2 were used as tested gases. The doping concentration effect on the sensor parameters such as magnitude of response, operating temperature, response and recovery times, sensitivity to the air humidity, and selectivity have been analyzed. It was shown that In2O3 doping by Ga and P could be used for the sensor performance optimization. It was assumed that the appearance of the second phase (InPO4 and Ga2O3) and the change of structural parameters, taking place during doping process, were the main factors controlling the change of operating characteristics in In2O3:P and In2O3:Ga-based sensors.  相似文献   
33.
Atom scattering is becoming recognized as a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here, the theory is developed, linking λ to the thermal attenuation of atom scattering spectra (in particular, the Debye–Waller factor), to conducting materials of different dimensions, from quasi-1D systems such as W(110):H(1 × 1) and Bi(114), to quasi-2D layered chalcogenides, and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of λ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition, the number of layers contributing to the electron–phonon interaction, which is measured in an atom surface collision.  相似文献   
34.
MgAl2-2xMn2xO4 (MAMO) with x = 0-0.12 was synthesized in a single-phase form by solid-state reaction. XRD analysis showed that the samples had the cubic center structure of the Fd-3 m space group. Electrical properties of the samples were studied over the temperature range of 300 K∼1073 K. The results showed that the DC conductivity (σDC) increased from 10−11S/cm at 300 K (MAMO, x = 0) to 10-3S/cm at 1073 K (MAMO, x = 0.12). The equivalent circuit of the complex impedance spectra suggested that the relaxation of charge carriers was of non-Debye type. The conduction was mainly caused by grain boundaries and the capacitance was mainly attributed to polarization. The complex permittivity values (ε’ and ε’’) were increased by two orders of magnitude with the increase in Mn content and temperature over the measured frequency range (1 Hz-1 MHz). Therefore, doping with Mn could be applied to modify the electrical properties of MAMO at high temperature.  相似文献   
35.
Upconversion phosphors are known as a material system that can convert near-infrared light into visible/ultraviolet emissions by sequentially absorbing multiple photons. The studies on upconversion materials often use two rare earth (RE) ions as a sensitizer-activator pair. We investigated the influences on luminescence intensity depending on Cr-doping content (x) of hexagonal NaLu0.98–xCrxF4Er0.02 (x = 0–0.9) upconversion material by substituting Lu3+ ions with Cr3+in the absence of Gd3+. The change in upconversion luminescence intensity appears with saddle-like shape. We suggest that Cr3+ ions play the dual role as a constituent in host lattice and a sensitizer in the upconversion process. Optimal conditions for gaining the strongest upconversion emission correspond to x = 0.3–0.5, where there are effective energy transfers between Cr3+ and Er3+ ions and CrEr dimers. Apart from these values, the emission intensity decreases rapidly which can be ascribed to the absence of multiple-photon absorption for the case of low Cr3+ contents, and to the coupling between Cr3+ and/or Er3+ ions for the case of high Cr3+ contents. Magnetization and electron-spin-resonant measurements were performed to understand the correlation between the optical and magnetic properties.  相似文献   
36.
Technical ceramics exhibit exceptional high-temperature properties, but unfortunately their extreme crack sensitivity and high melting point make it challenging to manufacture geometrically complex structures with sufficient strength and toughness. Emerging additive manufacturing technologies enable the fabrication of large-scale complex-shape artifacts with architected internal topology; when such topology can be arranged at the microscale, the defect population can be controlled, thus improving the strength of the material. Here, ceramic micro-architected materials are fabricated using direct ink writing (DIW) of an alumina nanoparticle-loaded ink, followed by sintering. After characterizing the rheology of the ink and extracting optimal processing parameters, the microstructure of the sintered structures is investigated to assess composition, density, grain size and defect population. Mechanical experiments reveal that woodpile architected materials with relative densities of 0.38–0.73 exhibit higher strength and damage tolerance than fully dense ceramics printed under identical conditions, an intriguing feature that can be attributed to topological toughening.  相似文献   
37.
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite.  相似文献   
38.
39.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
40.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号