首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100474篇
  免费   24927篇
  国内免费   2809篇
电工技术   4301篇
技术理论   2篇
综合类   2850篇
化学工业   33572篇
金属工艺   7926篇
机械仪表   4016篇
建筑科学   3939篇
矿业工程   1383篇
能源动力   3958篇
轻工业   9471篇
水利工程   865篇
石油天然气   1233篇
武器工业   327篇
无线电   13971篇
一般工业技术   25664篇
冶金工业   4422篇
原子能技术   681篇
自动化技术   9629篇
  2024年   189篇
  2023年   1473篇
  2022年   1525篇
  2021年   2467篇
  2020年   4716篇
  2019年   7057篇
  2018年   6384篇
  2017年   7105篇
  2016年   6818篇
  2015年   6644篇
  2014年   7352篇
  2013年   8264篇
  2012年   7297篇
  2011年   7279篇
  2010年   5635篇
  2009年   5503篇
  2008年   5184篇
  2007年   5476篇
  2006年   5091篇
  2005年   4303篇
  2004年   3816篇
  2003年   3664篇
  2002年   3314篇
  2001年   2760篇
  2000年   2559篇
  1999年   1685篇
  1998年   810篇
  1997年   683篇
  1996年   597篇
  1995年   460篇
  1994年   427篇
  1993年   325篇
  1992年   284篇
  1991年   229篇
  1990年   201篇
  1989年   148篇
  1988年   95篇
  1987年   59篇
  1986年   48篇
  1985年   60篇
  1984年   55篇
  1983年   48篇
  1982年   44篇
  1981年   17篇
  1980年   12篇
  1979年   11篇
  1977年   9篇
  1976年   6篇
  1975年   9篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
61.
《Ceramics International》2021,47(23):33280-33285
This study investigated carbon nanotube filtration technology using catalyst particles supported on silicalite-1–biomorphic carbon materials (BCMs). Aqueous solutions of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) were used to test the efficiency of heavy metal ions removal. Carbon nanotubes (CNTs) were synthesized and grown on BCMs by the chemical vapor deposition method catalyzed with the catalyst (Co, Fe, and Ni). The synthesized CNTs with Co– and Fe– nanoparticles were typically multi-walled carbon nanotubes, and they showed good crystallinity (ID/IG = 1.05) and yield of (11.10 and 8.86) %. The removal efficiency of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) ions using Co-catalyzed CNT filter was 97.57%, 98.01%, 97.89%, 97.42%, and 99.99%, respectively.  相似文献   
62.
《Ceramics International》2020,46(2):1990-2001
An overview of research on the synthesis of manganese titanates is presented. The xerogel of Mn–Ti–O–C–H composition was synthesized from manganese acetate and titanium tetrabutylate via liquid-phase method using organic solvents. The calcination of xerogel in air at 450 °C and 700 °C yielded manganese titanate precursors in the form of a nanostructured mixture of Mn2O3 and TiO2. Annealing at 1000 °C, manganese metatitanate MnTiO3 was obtained. Reference experiments with initial reagents included, separately, thermal decomposition of Mn(CH3COO)2×4H2O and the product of Ti(OC4H9)4 hydrolysis. The composition, structure, and properties of the products were studied using X-ray diffraction, scanning electron microscopy, elemental analysis, diffuse reflectance IR Fourier spectroscopy, thermogravimetry, and by measuring specific surface area. The data presented by these different techniques are basically consistent with each other (with an increase in the annealing temperature, an increase in globule size and decrease in specific surface area are observed; structuring occurs within the long- and short-range order; the size of the crystallites does not exceed that of the globules; elemental composition correlates with phase composition; the endothermic character of the reaction of MnTiO3 formation at 900 °C is confirmed by a thermodynamic calculation). Nevertheless, some unexpected effects were revealed (based on the FTIR diffuse reflection spectra, mixed oxide Mn–Ti–O is formed in the surface layer of particles already at 450 °C and 700 °C; etc.). Application of the proposed technique for modifying Al2O3 powders, with the aim of implementing low-temperature sintering of corundum ceramics, is discussed.  相似文献   
63.
Mechanical durability of extruded fish feed must be optimized to lower economic losses as well as emission of organic matter to aquatic environments. The glass transition hypothesis for viscoelastic biopolymers is demonstrated and confirmed experimentally to be valid for extruded fish feed pellets. It is proposed and demonstrated that it is important to avoid early glass transition onset, to optimize the obtained mechanical durability. From the proposed glass transition hypothesis, immediate process relevance to the pre-drying transport mechanism is demonstrated. Furthermore, measured mechanical durability is found to range from 1.5 to 5.0% loss, for different combinations of drying parameters.  相似文献   
64.
It is expected that demand response might provide soon ancillary services to the power system. This could be done, for example, by managing the use of Electric Vehicles (EV) batteries, or the production of flexible energy commodities such as hydrogen (H2), that can be used for fuel cell vehicles (H2EV) or in industrial processes. This paper analyses the impact of a transition to H2EV as an alternative to EV for passengers’ cars on a Spanish-like power sector. A simple H2 demand estimation is developed and provided to CEVESA, an operation and expansion model for the Iberian Power System Electricity Market (MIBEL). For this study, CEVESA was extended to include the investments and operation decisions of H2 production. Simulations were performed to determine the optimal evolution of the H2 production capacity and of the electricity generation mix, considering scenarios with different shares of EV and H2EV. The impact of H2EV vs EV mobility is assessed based on the recent Spanish National Plan for Energy and Climate (NECP) as the base case scenario. Results show that, even if H2EV mobility alternative is still more costly than EV, H2 production could provide a significant flexibility to the system that should also be appraised. Indeed, H2EV mobility could become a feasible and complementary alternative to decarbonize mobility by powering H2 production with the renewable generation surplus. This, together with the on-going learning process of this technology that will decrease its production costs and increase its efficiency in the coming years, could boost, even more, the development of the H2 economy.  相似文献   
65.
The environmental performance of 316L grade stainless steel, in the form of tensile specimens containing a single corrosion pit with various aspect ratios, under cyclic loading in aerated chloride solutions is investigated in this study. Results from environmental tests were compared and contrasted with those obtained using finite element analysis (FEA). Fractography of the failed specimens obtained from experiments revealed that fatigue crack initiation took place at the base of the shallow pit. The crack initiation shifted towards the shoulder and the mouth of the pit for pits of increasing depth. This process is well predicted by FEA, as the strain contour maps show that strain is the highest around the centric strip of the pit. However, for shallow pits, local strain is uniformly distributed around that strip but begins to concentrate more towards the shoulder and the mouth region for increasingly deep pits.  相似文献   
66.
Dietary advanced glycation end products (dAGEs) are complex and heterogeneous compounds derived from nonenzymatic glycation reactions during industrial processing and home cooking. There is mounting evidence showing that dAGEs are closely associated with various chronic diseases, where the absorbed dAGEs fuel the biological AGEs pool to exhibit noxious effects on human health. Currently, due to the uncertain bioavailability and rapid renal clearance of dAGEs, the relationship between dAGEs and biological AGEs remains debatable. In this review, we provide the most updated information on dAGEs including their generation in processed foods, analytical and characterization techniques, metabolic fates, interaction with AGE receptors, implications on human health and reducing strategies. Available evidence demonstrating a relevance between dAGEs and food allergy is also included. AGEs are ubiquitous in foods and their contents largely depend on the reactivity of carbonyl and amino groups, along with surrounding condition mainly pH and heating procedures. Once being digested and absorbed into the circulation, two separate pathways can be involved in the deleterious effects of dAGEs: an AGE receptor‐dependent way to stimulate cell signals, and an AGE receptor‐independent way to dysregulate proteins via forming complexes. Inhibition of AGEs formation during food processing and reduction in the diet are two potent approaches to restrict health‐hazardous dAGEs. To elucidate the biological role of dAGEs toward human health, the following significant perspectives are raised: molecular size and complexity of dAGEs; interactions between unabsorbed dAGEs and gut microbiota; and roles played by concomitant compounds in the heat‐processed foods.  相似文献   
67.
In this paper, an adaptive control approach is designed for compensating the faults in the actuators of chaotic systems and maintaining the acceptable system stability. We propose a state‐feedback model reference adaptive control scheme for unknown chaotic multi‐input systems. Only the dimensions of the chaotic systems are required to be known. Based on Lyapunov stability theory, new adaptive control laws are synthesized to accommodate actuator failures and system nonlinearities. An illustrative example is studied. The simulation results show the effectiveness of the design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
68.
Here, LiY(WO4)2 nanotubes are prepared via a feasible electrospinning technique. This new anode material shows excellent electrochemical properties. The capacity loss of LiY(WO4)2 nanotubes is as low as 6.9% after 156 cycles, while bulk LiY(WO4)2 presents the capacity loss higher than 55.0%. Even after 600 long-life cycles, the capacity loss of the nanotubes is only 9%. It can be seen that the hollow structure with a rough surface and a porous morphology contributes to the improvement of electrochemical performance. Furthermore, online X-ray diffraction (XRD) method is firstly applied to understand the lithium ions insertion/extraction mechanism of LiY(WO4)2 nanotubes. It can be concluded that it is an asymmetrical two-phase reaction. A phase transformation from LiY(WO4)2 to Li3Y(WO4)2 can be obviously seen from the in situ XRD during discharge process. While Li2Y(WO4)2 appears as an intermediate phase with a reverse charge reaction. In addition, in situ XRD also demonstrates that LiY(WO4)2 nanotubes have surprised electrochemical reversibility. All the above results indicate that LiY(WO4)2 nanotubes can be expected to be anode candidate for rechargeable lithium ion batteries (LIBs).  相似文献   
69.
Atom scattering is becoming recognized as a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here, the theory is developed, linking λ to the thermal attenuation of atom scattering spectra (in particular, the Debye–Waller factor), to conducting materials of different dimensions, from quasi-1D systems such as W(110):H(1 × 1) and Bi(114), to quasi-2D layered chalcogenides, and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of λ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition, the number of layers contributing to the electron–phonon interaction, which is measured in an atom surface collision.  相似文献   
70.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号