首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1893篇
  免费   16篇
  国内免费   38篇
电工技术   12篇
综合类   33篇
化学工业   668篇
金属工艺   48篇
机械仪表   64篇
建筑科学   132篇
矿业工程   8篇
能源动力   334篇
轻工业   146篇
水利工程   10篇
石油天然气   23篇
武器工业   2篇
无线电   80篇
一般工业技术   232篇
冶金工业   76篇
原子能技术   30篇
自动化技术   49篇
  2024年   1篇
  2023年   36篇
  2022年   55篇
  2021年   57篇
  2020年   51篇
  2019年   38篇
  2018年   49篇
  2017年   49篇
  2016年   52篇
  2015年   42篇
  2014年   74篇
  2013年   127篇
  2012年   81篇
  2011年   172篇
  2010年   128篇
  2009年   137篇
  2008年   134篇
  2007年   116篇
  2006年   90篇
  2005年   70篇
  2004年   66篇
  2003年   63篇
  2002年   57篇
  2001年   34篇
  2000年   30篇
  1999年   16篇
  1998年   15篇
  1997年   25篇
  1996年   14篇
  1995年   14篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   11篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1982年   5篇
  1979年   1篇
排序方式: 共有1947条查询结果,搜索用时 15 毫秒
51.
The human life faces serious energy shortage and environmental pollution problems, therefore developing a facile and environmental friendly strategy for synthesizing nanoparticles (NPs) with improved photocatalytic activity could pave the way for different applications. In the present study, one-pot/in-situ fluorine-free synthesis process has been examined toward the solvothermal production of anatase TiO2 nanoparticles with exposed facet orientation. This is an aim to achieve the excellent photocatalytic/photoelectrocatalytic performance. Most importantly addressing the global energy shortage, the synthesized TiO2 NPs represent superior performance in photoelectrocatalytic water splitting toward hydrogen production. The overpotential required to drive the hydrogen evolution reaction was −391, −346 and −283 mV vs. Ag/AgCl for P25, cubic and truncated octahedral NPs, respectively. Additionally, TiO2 NPs with exposed facets represent excellent photocatalytic performance toward environmental purification. As synthesized nanoparticles was examined via photocatalytic degradation of Acid Blue 5 and photocatalytic removal of NO gas. The enhanced photocatalytic and photoelectrocatalytic performance are associated to the effect of exposed facet orientation of final nanoparticles.  相似文献   
52.
Yttria-Stabilized-Zirconia fillers with different Y2O3 loadings are used to prepare composite Nafion membranes for PEMFCs. XRD and BET demonstrate the formation of a c-ZrO2 mesoporous structure. SEM reveals a size reduction of the agglomerates increasing the ZrO2 doping level. A good mechanical resistance, no variation into the water retention, swelling restraint and an increased Ion Exchange Capacity (IEC) of the membranes are found respect to reference membrane, above all for highly doped membranes, indicating an acidic properties enhancement. Proton conductivity (PC) at 100%RH (80–100 °C) is unchanged for composite membranes compared to reference. At 75%RH, PC is positively affected by the highest YSZ loadings. Fenton's test on membranes evidences a higher oxidative chemical stability for composite membranes. This improved stability is confirmed by accelerated stress test in drastic conditions: composite highly doped membranes work for more than 110 cycles with a good performance and lower H2-crossover against 95 cycles and higher H2-crossover than reference membrane.  相似文献   
53.
Different factors such as the way of incorporating the Y2O3 stabilizer, alumina addition and sintering temperature were assessed with the goal to improve the low temperature degradation (LTD) resistance of 3Y-TZP without compromising on the mechanical properties. The degradation of hydrothermally treated specimens was studied by X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy.Decreasing the sintering temperature decreased the LTD susceptibility of 3Y-TZPs but did not allow to obtain a LTD resistant 3Y-TZP with optimized mechanical properties. Alumina addition along with the use of Y2O3 stabilizer coated starting powder allowed to combine both an excellent toughness and LTD resistance, as compared to alumina-free and stabilizer co-precipitated powder based equivalents. Transmission electron microscopy revealed that the improved LTD resistance could be attributed to the segregation of Al3+ at the grain boundary and the heterogeneously distributed Y3+ stabilizer.  相似文献   
54.
Solution-processed organic light-emitting devices (OLEDs) still require improvements in their operational lifetime in order for them to become commercially viable. One factor that limits the lifetime of these devices is the instability of the hole injection layer (HIL). Therefore, understanding its degradation mechanism is crucial for the development of more stable solution-processed OLEDs. In this work, we use an archetypal fluorescent OLED in conjunction with an experimental solution-processed HIL in order to elucidate the degradation mechanism in these HILs. Our studies show that degradation is caused by triplet excitons. This new triplet-induced hole injection degradation is expected to be a common phenomenon in OLEDs, and therefore should have important implications for the design of stable HILs.  相似文献   
55.
Extra-label use of veterinary medications in apiculture is a practice which is known to result in the presence of drug residues in honey. Erythromycin has been used by some beekeepers in an attempt to control foulbrood diseases in honey bees. It is recognised that erythromycin degrades in acidic aqueous solutions to yield predominantly anhydroerythromycin. Honey is an acidic medium in which erythromycin should also degrade. Three degradation products with a molecular weight of 715 Da (anhydroerythromycin, erythromycin enol ether, and an unidentified but suspected related isomer) have been confirmed to be formed in honey. Erythromycin was found to degrade rapidly in honey at typical hive temperature with a half-life of less than one day. Based on these results, it is recommended that food safety laboratories include degradation products in analytical testing protocols when examining honey for erythromycin residues.  相似文献   
56.
This paper presents a new method and results from measurement of internal parameters of programmable nanoscale circuits, namely Xilinx FPGA devices and especially Zynq SoC devices designed on 28 nm TSMC’s technology and older 45 nm Spartan 6 device as well as Xilinx Virtex product lines. The method utilizes a new undersampling approach for frequency measurement and an easy way of processing BRAM data streams. The proposed flexible circuits have been used in various measurements of timing parameters and delays in FPGAs, including measurements or detection of the aging issues. The paper presents results of measurements under various core voltage values as performed on selected Xilinx FPGA platforms, including key results about limited usability of the latest 28 nm devices under accelerated conditions and possibility of studying or mitigating aging effects in FPGAs. The paper presents rare results of experiments, real measurements and data available from current as well as previous technology nodes and it attempts to uncover new facts and areas of the latest high-end technologies, including the area of aging and degradation processes in general. The new methodology, presented approach and results can also be used in various dependable systems, including selected aerospace, medical, automotive or transportation ones. It is also directly and easily applicable to modern processor and multicore systems.  相似文献   
57.
The objective of this study was to evaluate the shelf life of powdered guavira pulp obtained by a foam mat drying process. The dehydrated guavira pulp was packed into low density polyethylene (LDPE) bags and stored under two controlled conditions: environmental (25 °C, RH 75%) and accelerated (35 °C, RH 90%) for 90 days. The shelf life was accompanied by carrying out the following analyses every 10 days: moisture content, water activity, vitamin C content, pH and titratable acidity. Vitamin C was the quality attribute used to determine the shelf life of the product, by determining its degradation kinetics as a function of storage time. The linear regression data showed that the vitamin C degradation reaction fitted the zero and first order kinetic models. The shelf life of the powdered guavira pulp under environmental conditions was approximately 49 days, and under accelerated conditions (35 °C) 45 days. The Q10 was equal to 1.09, predicting a shelf life similar to that found under environmental conditions. The moisture content for these conditions was 10.0% e 5.4% for 35 °C and 25 °C, respectively. The above demonstrate the efficiency of the accelerated test in predicting the shelf life of the product.  相似文献   
58.
Bismuth oxyhalides (BiOX (X = Cl, Br, I) are considered to be an important p-type semiconductors in the photocatalysis applications. In particular, tetragonal BiOBr is considered as a stable photocatalyst due to its resilient absorption in the visible region with an band gap energy of 2.8 eV. In the meantime, lanthanide ions (with 3+ oxidation state) implies as conversion catalyst gained huge impact and remain a serious topic in materials chemistry. Here we synthesized upconversion photocatalyst mainly consists of BiOBr with the Er 3+ and Tb 3+ ions along with low band gap g-C3N5 for the improved photocatalytic performances. The synthesized Er3+/Tb3+@BiOBr-g-C3N5 heterojunction was systematically characterized by XRD, and FT-IR for the confirmation of the composite and their morphology were analysed with FESEM and HR-TEM analysis which revealed that the sheets of g-C3N5 were decorated by Er3+/Tb3+ loaded BiOBr microspheres. The XPS analysis confirmed the suitable oxidation state of all the individual elements existing in the composite. As the UV-DRS analysis showed that the band gap of the Er3+/Tb3+ BiOBr-gC3N5 heterojunction was narrowed to 2.64 eV. To evaluate the photocatalytic efficiency of the synthesized g-C3N5, Er3+/Tb3+@BiOBr and Er3+/Tb3+@BiOBr-gC3N5 heterojunction under the simulated visible light irradiation source towards the aqueous sulfamethoxazole degradation. The Er3+/Tb3+@BiOBr-gC3N5 heterojunction shows maximum degradation efficiency of 94.2% after 60 min of visible light irradiation whereas the pure g-C3N5 provided about 43.8% and Er3+/Tb3+@BiOBr implies 55.2% degradation efficiency. The plausible degradation mechanism of pollutant removal was proposed.  相似文献   
59.
Degradation rates of electrical current during constant voltage operation of SOFCs with anodes made using NiO precursor powders from two different manufacturers with and without the addition of aluminum titanate (ALT) added by either mechanical mixing or anode infiltration have been quantified using a novel MATLAB algorithm. Because the algorithm has been used to quantify degradation rates for many different SOFC tests, it is thought that the method can be applied to most measured SOFC data to quantify the instantaneous cell degradation rate as a function of time for the entire SOFC performance measurement. Degradation rates determined at different times have been plotted against varying concentrations of ALT addition, facilitating the estimation of optimum ALT concentration for SOFC anodes made with NiO from a specific manufacturer. The algorithm used to determine degradation rates is available upon request to the corresponding author.  相似文献   
60.
Due to the excellent optoelectronic properties, organic–inorganic perovskites have drawn much attention and have been applied in different electronics with remarkable performance. However, the poor stability creates a massive barrier for the commercialization of perovskite electronic devices. In this review, we discuss intrinsic and extrinsic factors causing instabilities of perovskites and perovskite devices such as solar cells, liquid crystal displays (LCDs), light emitting diodes (LEDs), ionizing radiation detectors, transistors, memristors and sensors. We further review the stabilization approaches, including composition engineering, adoption of lower dimensional compositions, quantum dots, interface engineering, defects engineering and so on.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号