首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   690篇
  免费   2篇
  国内免费   2篇
综合类   3篇
化学工业   60篇
金属工艺   63篇
机械仪表   43篇
建筑科学   19篇
能源动力   25篇
武器工业   1篇
无线电   31篇
一般工业技术   436篇
冶金工业   4篇
原子能技术   1篇
自动化技术   8篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   19篇
  2015年   56篇
  2014年   47篇
  2013年   42篇
  2012年   61篇
  2011年   61篇
  2010年   52篇
  2009年   56篇
  2008年   57篇
  2007年   40篇
  2006年   37篇
  2005年   22篇
  2004年   24篇
  2003年   18篇
  2002年   12篇
  2001年   18篇
  2000年   4篇
  1999年   11篇
  1998年   16篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
排序方式: 共有694条查询结果,搜索用时 468 毫秒
71.
An extensive experimental program has been carried out to investigate and understand the sequence of damage development throughout the life of bolted-hole composite laminates under quasi-static loading and tension–tension fatigue. Quasi-isotropic carbon/epoxy laminates, with stacking sequence [452/902/-452/02]S defined as ply scaled and [45/90/-45/0]2S defined as sub-laminate scaled, were used. Specimens were cycled at 5 Hz with various amplitudes to 1 × 106 cycles unless failure occurred prior to this limit. For all cases an R ratio of 0.1 was used. Bolt washer pressures of 23 MPa and 70 MPa were investigated. For the ply-level case, the quasi-static test showed both delamination and fibre-dominated pull-out failures for a washer pressure of 23 MPa, and pull-out failure only for 70 MPa. Delamination dominates in fatigue tests. For the sub-laminate case the tests failed by pull-out in both quasi-static and fatigue tests for all washer pressures. It is shown in this paper how the role of delamination is critical in the case of fatigue loading and how this interacts with bolt clamp-up forces. A number of tests were analysed for damage using X-ray CT scanning and comparisons of damage are made with tests from previous open-hole studies.  相似文献   
72.
Bridging by intact fibers in composite materials is one of the most important toughening mechanisms. However, a direct experimental assessment of its contribution is not easy to achieve. In this work a semi-experimental method is proposed to quantify its contribution to fracture of unidirectional carbon fiber/epoxy double cantilever beam (DCB) specimens in mode I delamination under monotonic and 1 Hz fatigue loads. In each specimen, an embedded optical fiber with an array of eight wavelength-multiplexed fiber Bragg gratings is used to measure local strains close to the crack plane. The measured strain distribution serves in an inverse identification procedure to determine the tractions in the bridging zone in monotonic and fatigue loads. These tractions are used to calculate the energy release rate (ERR) associated with bridging fibers. The results indicate that the ERR due to bridging is about 40% higher in fatigue. The bridging tractions are further included in a cohesive element model which allows to predict precisely the complete load displacement curve of monotonic DCB tests. Using the principle of superposition and the identified tractions, the total stress intensity factor (SIF) is calculated. The results show that the SIF, at initiation, is very close to the one calculated at crack propagation and bridging by intact fibers is responsible for the entire increase in toughness seen in the DCB specimens used herein.  相似文献   
73.
Composite structures are being used increasingly in the aerospace industry due to their superior specific stiffness and strength. One key issue associated with such structures is delamination, and how to effectively predict this. A new method which is derived from localised test displacement data is presented to determine the mixed mode strain energy release rates of layered structures with a pre-existing crack. Images taken during experimentation of the vicinity of the crack tip are analysed at low load and high load to determine the displacement changes across the load variation. These displacements are applied as boundary conditions to a simple local numerical model including a constraint at the crack tip. The forces and displacements at the crack tip are taken as output data and combined with the Virtual Crack Closure Technique to predict strain energy release rates. Initial validation of the localised experimental–numerical technique (LENT) shows that applying experimental data to a numerical model does give reasonable agreement thus far in the established trends, and hence LENT is promising for use in determining mixed mode strain energy release rates and mode mixity ratios.  相似文献   
74.
Crack initiation and propagation along the Cu/Si interface in multilayered films (Si/Cu/SiN) with different thicknesses of the Cu layer (20 and 200 nm) are experimentally investigated using a nano-cantilever and millimeter-sized four-point bending specimens. To examine the cohesive zone model (CZM) criterion for interfacial delamination along the Cu/Si interface in nanoscale stress concentration, an exponential type of CZM is utilized to simulate the observed delamination processes using the finite element method. After the CZM parameters for the Cu/Si interface are calibrated by experiment, interface cracking in other experiments is predicted. This indicates that the CZM criterion is universally applicable for describing cracking along the interface regardless of specimen dimensions and film thickness which include the differences in plastic behavior and residual stress. The CZM criterion can also predict interfacial cracking along Cu/Si interfaces with different stress singularities.  相似文献   
75.
Fiber bridging is regularly encountered in mode I delamination tests of unidirectional fiber reinforced composites. However, characterization of the bridging tractions is rather difficult. One way to indirectly evaluate the bridging traction distribution is to embed a fiber Bragg grating (FBG) sensor close to the crack tip and to measure the distributed strain along this FBG. The strain measurements from the FBG sensor are used to characterize the fiber bridging tractions by an identification method. In this work, the sensor is embedded in a unidirectional carbon/epoxy composite. Firstly, it is treated as an inclusion near the crack plane and a numerical analysis is performed to study its effect on the measured strain field and energy release rate. The results demonstrate that the sensor, located at about two fiber diameters from the crack plane, has a negligible effect on the fracture process. Secondly, among the identified linear, bilinear, and exponential bridging traction distributions, the exponential one is found to be a suitable model. Characterization of the bridging tractions allows to calculate the energy release due to the bridging fibers which is similar to the difference between the initiation energy release and the propagation value . The results also agree with the bridging tractions evaluated from the conventional energy release rate – crack opening displacement method.  相似文献   
76.
A double cantilever beam specimen loaded with uneven bending moments (DCB-UBM) is proposed for mixed mode fracture mechanics characterisation of adhesive joints, laminates and multilayers. A linear elastic fracture mechanics analysis gives the energy release rate and mode mixity analytically for both isotropic and orthotropic materials. By varying the ratio between the two applied moments, the crack tip stress state can be varied from pure mode I to pure mode II for the same specimen geometry. The specimen allows stable crack growth. A special test fixture is developed to create uneven bending moments. As a preliminary example, the DCB-UBM specimen was used for characterising fracture of adhesive joints between two laminates of thermoset glass fibre reinforced plastic.  相似文献   
77.
Machining of composites has caught greater attention in manufacturing of structural parts in aerospace, automobile and sporting goods. Composite materials have advantageous features in strength and stiffness coupled with lightweight compared to the conventional metallic materials. Amongst all machining operations, drilling is the most commonly applied method for generating holes for riveting and fastening the structural assembly. Delamination is one of the serious concerns in drilling holes in composite materials at the bottom surface of the workpiece (drill exit). Quite a few references of the drilling of fiber-reinforced plastics report that the quality of cut is strongly dependent on drilling parameter as well as the drill geometry. Saw drills and core drills produce less delamination than twist drills by distributing the drilling thrust toward the hole periphery. Delamination can be effectively reduced or eliminated by slowing down the feed rate when approaching the exit and by using back-up plates to support and counteract the deflection of the composite laminate leading to exit side delaminations. The use of the back-up does reduce the delamination in practice, which its effects have not been well explained in analytical fashion. This paper predicts the effects of backup plate on delamination in drilling composite materials using saw drill and core drill. The critical drilling thrust force at the onset of delamination is calculated and compared with that without backup. The well known advantage of industrial use of backup can be understood fundamentally by the fact that the threshold thrust force at the onset of delamination is increased making the delamination less induced.  相似文献   
78.
Previous numerical work on crack tunnelling and plane-strain delamination in layered solids is evaluated with static and fatigue experiments and analysis. It is concluded that the translation of the theory derived for static fracture to fatigue loading is not as straightforward as initially assumed. Details such as delamination location, stress state, plasticity and mode-mixity need further consideration to obtain a theory that is sufficiently adequate to describe the static and fatigue phenomena observed in practice.  相似文献   
79.
Corrosion reactions which take place during delamination in the vicinity of defects have not been understood up to now. In this paper the delamination of a simple model coating from clean steel and the delamination of technical coatings from petreated steel substrates are analysed with a scanning Kelvin probe. It is possible, with this technique, to follow the delamination in situ and to understand the basic corrosion mechanism at the metal/polymer interface.  相似文献   
80.
A new approach based on the concepts of the discrete element method, is presented for impact resistance analysis of composites. The method is capable of analysing the progressive fracturing and fragmentation behaviour, as well as potential post-cracking interactions caused by the newly created crack sides and segments. The imminence of a material crack is monitored by an anisotropic Hoffman model. To avoid the mesh dependency of the results, a bilinear local softening model, based on modes I and II, is also adopted in this study to account for release of energy and redistribution of forces that caused the formation of a crack. A special re-meshing method has been developed to geometrically model an individual crack by splitting the element, separating the failed node, creating new nodes and dividing the neighbouring elements to preserve the compatibility conditions. Numerical simulations have been performed to assess the performance of the proposed algorithm. The method has proved to be an efficient approach for impact analysis of composites undergoing progressive delamination and cracking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号