首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8569篇
  免费   231篇
  国内免费   205篇
电工技术   67篇
综合类   90篇
化学工业   3874篇
金属工艺   856篇
机械仪表   191篇
建筑科学   98篇
矿业工程   51篇
能源动力   1492篇
轻工业   145篇
水利工程   2篇
石油天然气   77篇
武器工业   4篇
无线电   320篇
一般工业技术   1193篇
冶金工业   265篇
原子能技术   141篇
自动化技术   139篇
  2024年   13篇
  2023年   250篇
  2022年   187篇
  2021年   266篇
  2020年   224篇
  2019年   211篇
  2018年   217篇
  2017年   213篇
  2016年   206篇
  2015年   161篇
  2014年   383篇
  2013年   536篇
  2012年   332篇
  2011年   898篇
  2010年   621篇
  2009年   691篇
  2008年   620篇
  2007年   538篇
  2006年   451篇
  2005年   286篇
  2004年   247篇
  2003年   243篇
  2002年   259篇
  2001年   133篇
  2000年   104篇
  1999年   112篇
  1998年   86篇
  1997年   74篇
  1996年   53篇
  1995年   45篇
  1994年   44篇
  1993年   32篇
  1992年   38篇
  1991年   24篇
  1990年   32篇
  1989年   23篇
  1988年   18篇
  1987年   23篇
  1986年   11篇
  1985年   20篇
  1984年   11篇
  1983年   10篇
  1982年   25篇
  1981年   5篇
  1980年   5篇
  1974年   4篇
  1964年   4篇
  1961年   3篇
  1959年   2篇
  1957年   2篇
排序方式: 共有9005条查询结果,搜索用时 15 毫秒
91.
(La, Ce, Pr, Nd)2MgNi9 hydrogen storage alloys were prepared through induction melting followed by a long annealing treatment. The structure and electrochemical properties of annealed alloys have been investigated by orthogonal design experiments. Both the individual effects of each substituting element and their interaction in alloys were studied systemically. It has been shown that the structure of main phase in alloys belongs to PuNi3-type with a space group R-3m. Substituting rare-earth elements have a significant effect on both the phase structure of alloys and microstructure. The anisotropic change in the crystal structure of alloys can cause the acceleration of pulverization of alloy particles and result in the deterioration of the cyclic stability of alloy electrodes. Misch metals can raise the plateau pressure of hydrogen absorption/desorption. The discharge capacity of alloy ranges from 342.97 to 380.68 mAh g−1 depending on the sort and content of substituting elements. Both cerium and neodymium can obviously reduce the discharge capacity of alloy electrodes. When compared to the La2MgNi9 alloy electrode, mish metals can significantly improve the high rate dischargeability of alloy electrodes. The improvement of the kinetic characteristic of alloy electrodes mainly results from the increase of the hydrogen diffusion rate in alloy bulk.  相似文献   
92.
Hydrogen evolution during formaldehyde oxidation in alkaline solution has been monitored by Differential Electrochemical Mass Spectrometry on Au(111) and polycrystalline gold. The current efficiency for hydrogen evolution increases with higher concentration and is in the same range on both, polycrystalline Au and Au(111) electrode. The onset potentials and half-wave potentials are higher on Au(111). Reaction orders for the faradaic current on the bare gold electrodes have been determined as 0.21 for higher and 0.76 for lower concentrations. Reaction orders for hydrogen evolution during formaldehyde oxidation are 1.4 times higher in each case. Tafel slopes in the range of 140-160 mV are found. This signifies that the first reaction step involving the formation of adsorbed hydrogen is largely determining the overall reaction rate. In the presence of thallium adlayers hydrogen evolution from formaldehyde oxidation is largely suppressed. On the thallium modified polycrystalline Au, formaldehyde oxidation is shifted for 100 mV to higher potentials where Tl is partially desorbed and hydroxide is coadsorbed on the modified surface. On thallium modified Au(111), a similar process takes place, but in the same potential region as the onset of formaldehyde oxidation on the bare surface and therefore the formaldehyde oxidation is only slightly shifted. Tafel slopes are decreased to 80 mV/dec in the presence of thallium. In the presence of adsorbed thallium, the first reaction step is in equilibrium, the coverage with adsorbed hydrogen is smaller and its recombination to H2 is largely suppressed.  相似文献   
93.
The electrochemical behavior of the bronze (Cu-8Sn in wt%) was investigated in 3% NaCl aqueous solution, in presence and in absence of a corrosion inhibitor, the 3-phenyl-1,2,4-triazole-5-thione (PTS). The inhibiting effect of the PTS was evidenced for concentrations higher than 1 mM for the cathodic process whereas its effect was clearly seen with a concentration as low as 0.1 mM for the anodic process. A significant positive shift of the corrosion potential was also observed, and its inhibiting effect increased with both its concentration and the immersion time of the sample. From voltammetry and electrochemical impedance spectroscopy experiments, the inhibiting efficiency of the PTS was found to be in the 94-99% range for 1 mM concentration. Scanning electron microscopy and X-ray energy dispersion analysis of the specimen surface show the presence of sulphur on the surface. Raman micro-spectrometry study confirms the protective effect of the PTS in aqueous solution through three types of interactions with the electrode, namely the adsorption of the inhibitor in a flat configuration, the formation of copper-thiol molecules, and when copper is released, the formation of a polymeric complex.  相似文献   
94.
使用毛细管电泳分离并定量分析了对苯二酚——— 1种黑白显影液中的显影剂和它的衰退反应产物对苯二酚单磺酸盐。优化了的毛细管电泳分离。  相似文献   
95.
G. Cota-Sanchez  G. Soucy  A. Huczko  H. Lange 《Carbon》2005,43(15):3153-3166
The existence of fullerenes (as allotropes of carbon) was established in the mid-1980s and during the last 15–18 years, systematic efforts have been devoted to improve the methods of their synthesis, including plasma-based system methods. The work presented here is focused on the investigation of fullerenes synthesis, using a radio frequency plasma reactor. The main objectives were to explore the use of induction plasma technology for the synthesis in-continuo of carbon fullerenes and to predict their formation conditions through conduct of theoretical studies. Thus, a thermodynamic study was carried out to predict the equilibrium composition of fullerenes produced at several combinations of operating conditions. Additionally, a statistical factorial design experiment, employing four factors at two levels, was also developed, in order to study the influence of the system’s operating parameters on the eventual C60 fullerene yield. The results obtained showed that the reactor pressure, the electrical power and the raw material feed rates all have an important effect on the synthesis of fullerenes. The highest C60 concentration in the products was found to be about 7.7 wt.%. Various other carbon nanostructures, such as nanotubes and nano-onions, were also successfully produced.  相似文献   
96.
Mesoporous sulfated Al2O3–ZrO2 (MSAZ) catalysts with large surface areas and pore volumes after calcination at high temperature (650 °C) and with higher Al2O3 content than 20wt% were successfully prepared from a template of block copolymer (P84). The MSAZ catalysts were characterized by X-ray diffraction (XRD), N2 adsorption, transmission electron microscopy (TEM), 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR), thermogravimetric analysis (TG–DTG), temperature-programmed desorption of ammonia (NH3-TPD) and infrared spectra (IR) of adsorbed pyridine. It is shown that the resulting mesostructured sulfated Al2O3–ZrO2 samples have a well-developed textural mesoporosity. The number of acid sites present on MSAZ catalysts is higher than that on conventional sulfated zirconia, and the former catalysts are more active than the latter one for various acid-catalyzed reactions.  相似文献   
97.
A non-steady boundary layer model is developed for numerical simulation of combustion and gasification of a single shrinking char particle. The model considers mass and energy conservation coupled with heterogeneous char reactions producing CO and homogeneous oxidation of CO to CO2 in the boundary layer surrounding the char particle. Mass conservation includes accumulation, molecular diffusion, Stefan flow and generation by chemical reaction. Energy conservation includes radiation transfer at the particle surface and heat accumulation within the particle. Simulation results predict experimentally measured conversion and temperature profiles of a burning Spherocarb particle in a laminar flow reactor. Effects of bulk oxygen concentration and particle size on the combustion process are addressed. Predicted particle temperature is significantly affected by boundary layer combustion of CO to CO2. With increasing particle size, char gasification to char combustion ratio increases, resulting in decreasing particle temperature and increasing peak boundary layer temperature.  相似文献   
98.
Model epoxy and bismaleimide compounds in thin film form were used to simulate epoxy and bismaleimide composite surfaces, in order to study compositional changes and interfacial reactions induced by oxygen plasma treatment. X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS) were used to probe chemical changes which occurred. XPS and IR-RAS were found to be complementary techniques in determining the nature of functional groups incorporated into surfaces by plasma treatment. IR-RAS analysis of the model surfaces following exposure to a liquid epoxy resin revealed that while adsorption of the liquid epoxy occurred on both plasma-treated and nonplasma-treated surfaces, the oxygen plasma-treated surface alone was capable of initiating ring-opening reactions in the epoxy. However, this effect was not observed unless immediate contact was made between the plasma-treated surface and the liquid epoxy resin, illustrating the short-lived reactivity of the functional groups on the plasma-treated surface.  相似文献   
99.
Epoxy resin is chosen for our present study owing to its exceptional combination of properties such as easy processing, high safety, excellent solvent and chemical resistance, toughness, low shrinkage on cure, good electrical, mechanical and corrosion resistance with excellent adhesion to many substrates. This versatility in formulation made epoxy resins widely applied for surface coatings, adhesives, laminates, composites, potting, painting materials, encapsulant for semiconductor and insulating material for electric devices. There are numerous paint/coating systems based on epoxy resin available for corrosion and fouling prevention. They however are not completely satisfactory in field applications, where high corrosion, fouling and flame resistance are required. The demand for epoxy resin as corrosion/fouling resistant coatings is restricted mainly due to its inferior characteristics like poor impact strength, high rigidity, and moisture absorbing nature besides inadequate flame retardant properties. It is for this reason that silicones and phosphorus-based compounds are used as modifier in this work by intercrosslinking network mechanism (ICN) to obtain epoxy resin with desired properties ideally suitable for field applications for preventing corrosion and fouling with flame retardantancy. The present work involves the development of solvent free silicone/phosphorus modified epoxy coating systems, since solvent free coating systems are widely used for numerous applications due to their lower cost per unit film thickness, freedom from fire and pollution hazard and ability to provide better performance. For the development of coating systems, epoxy resin (X) serves as base material, hydroxyl terminated polydimethylsiloxane (HTPDMS) as modifier, γ-aminopropyltriethoxysilane (γ-APS) as crosslinking agent and dibutyltindilaurate (DBTDL) as catalyst. Polyamidoamine (A), aromatic amine adducts (B) and phosphorus-containing diamine (C) were used as curing agents. The study also describes the evaluation of corrosion resistant behaviour of unmodified epoxy and siliconized epoxy coatings by potentiodynamic polarization method, electrochemical impedance spectroscopy (EIS), salt-spray and antifouling tests. The results are discussed.  相似文献   
100.
Mass transfer in annuli has been critically examined for various flow situations. The overall mass transfer rate depends on the hydrodynamic regions prevailing in the annular channel as well as on its dimensions. Theoretically consistent correlations are proposed and recommended for both developed and developing boundary layers under laminar and turbulent flow conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号