Erosion corrosion causes significant problems in various industrial environments through a synergistic effect which results in much greater weight loss than the sum of the weight losses in the individual processes. The erosion-corrosion behavior of three low-alloy steels was investigated in a simulated concrete slurry using the rotation method. The key influencing factors and mechanism of material degradation were analyzed. The experimental results indicate that the weight loss increases with the linear velocity according to a nearly exponential relationship (W = KVn), where n is 1. 40–2. 14. This weight loss is mainly caused by erosion in the alkaline slurry, and steels with higher tensile strengths show higher erosion-corrosion resistance. The formation of many platelets and ring cracks and their removal from the sample surface during erosion corrosion in the slurry are thought to constitute the mechanism responsible for this weight loss. These platelets and ring cracks are formed by solid particles striking the sample surface. Craters are initially produced and subsequently disappear as they grow and come in contact with each other. Fewer craters were observed on the surfaces of samples that exhibited higher weight loss. The surface of the material became work-hardened because of the effect of the particles striking and scratching, and a deformed layer was produced on the surface for steels of lower strengths, leading to deeper and more abundant gouges. 相似文献
Bulk transportation of sand particles is a key process controlling and quantifying the evolution of aeolian dune field. Sand amount eroded by wind within a given period is usually depicted in terms of ‘sand body elements’, whose thickness and transportation distance have direct impact on the accuracy of simulated spatiotemporal scales and the efficiency of quantitative simulations. This paper presents a detailed analysis to the rule of determining the thickness and transportation distance of ‘sand body elements’, which can be described in analytical formulas with respect to sand diameter, frictional wind velocity, and time interval of computational simulations. Following this model, the efficiency of quantitative simulations of dune field evolution is greatly enhanced without losing accuracy. 相似文献
The wear performance of ultrafine-grained tungsten carbide–cobalt (WC–Co) hard metals during three-body abrasion and particle erosion has been evaluated and compared to that of similar conventional coarser grained hard metals. The tungsten carbide grain size varied between 0.5 and 3 μm with cobalt contents ranging from 6 to 15%. Silica particles were used in both forms of testing. Erosion was carried out at 60 ms−1 at an impact angle of 75° and abrasion at a velocity of 0.5 ms−1 and a load of 50 N.
The wear resistance of the ultrafine grades was found to be at least double that of the closest conventional fine grained hard metals. These increases in wear performance are considerably higher than any corresponding increase in hardness which is, at most, 25% and is not achieved at the expense of fracture toughness which is maintained at a similar level to that of conventional fine grained hard metals. The increase in wear resistance coincides with a change in the mechanism of material removal. Sub-micron materials experience ductile deformation and bulk removal of material whilst coarser grades display more localised response with extensive fragmentation of the WC grains. 相似文献
Dense silicon carbide (SiC) ceramics were prepared with 0, 10, 30 or 50 wt% WC particles by hot pressing powder mixtures of SiC, WC and oxide additives at 1800 °C for 1 h under a pressure of 40 MPa in an Ar atmosphere. Effects of alumina or SiC erodent particles and the WC content on the erosion performance of sintered SiC–WC composites were assessed. Microstructures of the sintered composites consisted of WC particles distributed in the equi-axed grain structure of SiC. Fracture surfaces showed a mixed mode of fracture, with a large extent of transgranular fracture observed in SiC ceramics prepared with 30 wt% WC. Crack bridging by WC enhanced toughening of the SiC ceramics. A maximum fracture toughness of 6.7 MPa*m1/2 was observed for the SiC ceramics with 50 wt% WC, whereas a high hardness of 26 GPa was obtained for the SiC ceramics with 30 wt% WC. When eroded at normal incidence, two orders of magnitude less erosion occurred when SiC–WC composites were eroded by alumina particles than that eroded by SiC particles. The erosion rate of the composites increased with increasing angle of SiC particle impingement from 30° to 90°, and decreased with WC reinforcement up to 30 wt%. A minimum erosion wear rate of 6.6 mm3/kg was obtained for SiC–30 wt% WC composites. Effects of mechanical properties and microstructure on erosion of the sintered SiC–WC composites are discussed, and the dominant wear mechanisms are also elucidated. 相似文献
Solid particle erosion (SPE) behaviour of different hardfacing electrodes deposited on gray cast iron (ASTM 2500) was studied using quartz sand and iron ore as erodent particles. Erosion test was carried out as per ASTM G76 test method. Considerable differences in erosion rates were found among different hardfacing electrodes at normal impact. Both volume fraction of carbides and type of carbides played an important role in the erosion behaviour of the deposits when quartz sand was used as erodent particles. On the other hand, only volume fraction of carbides irrespective of carbide type mainly controlled the erosion rate of the same deposits when iron ore was used as erodent particles. Such difference is attributed due to difference in metal removal mechanisms by the two erodent particles used. Hard quartz sand particles were capable of causing damage to most of the carbides while relatively softer iron ore particles were unable to fracture any carbides present in the microstructures. Furthermore, relatively brittle matrix led to high erosion rate which is significant in case of quartz sand as erodent, but not in case of iron ore particles. Like abrasion resistance, hardness is not a true index of erosion resistance of hardfacing deposits. 相似文献