首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4958篇
  免费   413篇
  国内免费   115篇
电工技术   72篇
综合类   223篇
化学工业   885篇
金属工艺   1449篇
机械仪表   393篇
建筑科学   103篇
矿业工程   86篇
能源动力   116篇
轻工业   336篇
水利工程   4篇
石油天然气   105篇
武器工业   29篇
无线电   260篇
一般工业技术   636篇
冶金工业   595篇
原子能技术   79篇
自动化技术   115篇
  2024年   16篇
  2023年   75篇
  2022年   147篇
  2021年   156篇
  2020年   155篇
  2019年   98篇
  2018年   76篇
  2017年   110篇
  2016年   171篇
  2015年   167篇
  2014年   308篇
  2013年   271篇
  2012年   359篇
  2011年   406篇
  2010年   291篇
  2009年   298篇
  2008年   217篇
  2007年   330篇
  2006年   293篇
  2005年   227篇
  2004年   191篇
  2003年   187篇
  2002年   131篇
  2001年   123篇
  2000年   118篇
  1999年   112篇
  1998年   94篇
  1997年   61篇
  1996年   47篇
  1995年   44篇
  1994年   45篇
  1993年   31篇
  1992年   30篇
  1991年   21篇
  1990年   18篇
  1989年   17篇
  1988年   10篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1976年   1篇
排序方式: 共有5486条查询结果,搜索用时 15 毫秒
101.
All-optical responsive nanomaterials, which can rapidly switch between two stable states, have been regarded as the next-generation memories due to their potential to realize binary information storage and implement on-chip, integrated photonic neuromorphic systems. Rare earth oxides are preeminent candidates owing to their extraordinary luminescent stability and narrow optical transitions. However, due to the lack of simple and effective optical switches, it is difficult to realize all-optical data storage, encoding, and retrieval by pure rare earth-doped luminescent nanoparticles. Here, a rapid and high-contrast of 104 luminescent switching of Y2O3:Eu3+ nanoparticle between the enhancement and quenching states is achieved by employing the strong light confinement and ultrafast thermal response of localized surface plasmon resonance. A self-encrypted all-optical memory is presented with optical information writing, encryption, reading, and re-writing, and a high-sensitivity synaptic response of emitters to frequency and light intensity flux, which can be harnessed to encrypt information flows and promote convenient and high-security information encryption. Such a convenient and secure plasmonic thermally assisted self-encrypting luminescent switch paves the way for constructing high-performance stimuli-responsive rare earth oxide crystals on demand and expanding their applications in various data encryption, anti-counterfeiting, and rewritable colouration devices.  相似文献   
102.
Single crystals of L-alanine cadmium iodide (LACI) were grown by the slow evaporation technique at room temperature. A single-crystal X-ray diffraction (SXRD) model was used to evaluate the crystal structure of the as-grown LACI crystal. The energy dispersive X-ray (EDX) analysis and ultraviolet-visible-near infrared (UV-vis-NIR) transmittance studies were carried out, and the results reveal the presence of elements in the title compound. From the transmittance data, the optical bandgap as a function of photon energy was estimated, and the different optical constants were calculated. A fluorescence study was performed for the LACI crystal. Thermogravimetric and differential thermal analyses have also been studied to investigate the thermal property of the LACI crystal. The efficiency of the second harmonic generation (SHG) of the title crystal was investigated. The magnetic and electrical properties were estimated by the vibrating sample magnetometer (VSM) analysis and impedance study, respectively.  相似文献   
103.
Ever since the discovery of fullerenes in 1985, nanocarbon has demonstrated a wide range of applications in various areas of science and engineering. Compared with metal, oxide, and semiconductor nanoparticles, the carbon-based nanomaterials have distinct advantages in both biotechnological and biomedical applications due to their inherent biocompatibility. Fluorescent nanodiamond (FND) joined the nanocarbon family in 2005. It was initially developed as a contrast agent for bioimaging because it can emit bright red photoluminescence from negatively charged nitrogen-vacancy centers built in the diamond matrix. A notable application of this technology is to study the cytoplasmic dynamics of living cells by tracking single bioconjugated FNDs in intracellular medium. This article provides a critical review on recent advances and developments of such single particle tracking (SPT) research. It summarizes SPT and related studies of FNDs in cells (such as cancer cell lines) and organisms (including zebrafish embryos, fruit fly embryos, whole nematodes, and mice) using assorted imaging techniques.  相似文献   
104.
During heat treatment processes, especially during quenching, cracks may form because of the presence of high thermal and mechanical stresses and strains. Notwithstanding the fact that increasingly detailed modelling for heat treatment is being performed (considering, i.a., grain size, creep and transformation plasticity), homogeneous microstructures are still normally assumed. Chemical and hence structural inhomogeneities are not commonly explicitly considered, which is especially accentuated in the case of real parts simulation because of the resulting numerical problem's size. Intensive quenching on a cylindrical specimen of 100Cr6 (SAE) steel is proposed here to experimentally investigate the microcrack generation. A finite element based model is proposed to numerically evaluate the fracture behaviour in a two‐step simulation. First, by solving the quenching problem in direct correspondance with the experimental test performed, and second, by studying the mesoscale response taking into account the influence of second phase particles in a representative volume element based approach. The maximum principal stress criterion is used to trigger the fracture by means of the extended finite element method at the mesoscale. The trend to form cracks in the surface region, experimentally observed, has been well captured by the model. The influence of carbides sizes and content on the mesoscale fracture response has been numerically analysed as well. A good agreement has been reached between the simulations and the experimental results, exhibiting the potential of the introduced approach to be used as a failure prediction methodology.  相似文献   
105.
闫旺  李文生  何玲  安国升  胡春霞 《材料导报》2016,30(22):26-30, 42
选用热稳定性好的SiO2为包覆物,采用溶胶-凝胶法,以正硅酸乙酯为硅源,对商用磷光粉SrAl2O4∶Eu2+,Dy3+表面进行包覆,以解决磷光粉在高温下制备复合材料过程中因与金属粒子接触以及高温氧化产生猝灭的问题。实验通过热压烧结制备块体铜基磷光复合材料,考评包覆工艺对高温下制备的复合材料发光及摩擦性能的影响。通过X射线衍射、扫描电镜、荧光分光仪等设备对包覆前后磷光粉的表面形貌和发光性能进行分析和表征,采用摩擦试验机对包覆前后磷光粉与高铝青铜粉末混合制备复合材料烧结试样的摩擦性能进行研究。结果表明磷光粉表面包覆可有效避免其在高温下氧化猝灭和接触猝灭,包覆后磷光粉应用于铜基复合材料中可有效降低复合材料的磨损量,提高材料的耐磨性,当包覆比为10%时复合材料的发光性能、耐磨损性能最佳。  相似文献   
106.
采用力学性能测试、电导率测试和透射电子显微镜研究了淬火速率对汽车用高强铝合金性能的影响。结果表明:淬火速率从960℃/s降低到1.8℃/s,电导率提高了5.7% IACS,硬度的下降率为40%,抗拉强度和屈服强度的下降率分别为24.2%和56.9%,硬度和强度与淬火速率的对数呈线性关系。随着淬火速率的降低,淬火析出相的尺寸和面积分数显著增大,导致性能下降。淬火速率为1.8℃/s时,淬火析出相的平均尺寸为465.6 nm×158.2 nm,析出相的面积分数为42.1%。  相似文献   
107.
The aim of this study was to evaluate the use of ground-based canopy reflectance measurements to detect changes in physiology and structure of vegetation in response to experimental warming and drought treatment at six European shrublands located along a North-South climatic gradient. We measured canopy reflectance, effective green leaf area index (green LAIe) and chlorophyll fluorescence of dominant species. The treatment effects on green LAIe varied among sites. We calculated three reflectance indices: photochemical reflectance index PRI [531 nm; 570 nm], normalized difference vegetation index NDVI680 [780 nm; 680 nm] using red spectral region, and NDVI570 [780 nm; 570 nm] using the same green spectral region as PRI. All three reflectance indices were significantly related to green LAIe and were able to detect changes in shrubland vegetation among treatments. In general warming treatment increased PRI and drought treatment reduced NDVI values. The significant treatment effect on photochemical efficiency of plants detected with PRI could not be detected by fluorescence measurements. However, we found canopy level measured PRI to be very sensitive to soil reflectance properties especially in vegetation areas with low green LAIe. As both soil reflectance and LAI varied between northern and southern sites it is problematic to draw universal conclusions of climate-derived changes in all vegetation types based merely on PRI measurements. We propose that canopy level PRI measurements can be more useful in areas of dense vegetation and dark soils.  相似文献   
108.
We report excitation of surface plasmon in a gold-coated side-polished D-shape microstructure optical fiber (MOF). As the leaky evanescent field from the fiber core becomes highly localized by the plasmon wave, its intensity also gets amplified significantly. Here we demonstrate an efficient use of this intensified field as excitation in fluorescence spectroscopy. The so-called plasmonic enhanced fluorescence emission from Rhodamine B has been investigated experimentally. First, plasmonic effect alone was found to provide an immediate fluorescence enhancement factor of two. Second, experimental results show a good agreement with theoretical modeling. Strong evanescent field generation and surface enhancement with simple metallic coating makes this fiber based device a good candidate for compact fluorescence spectroscopy.  相似文献   
109.
A new triphenylamine-based fluorogenic probe bearing an indolylmethane unit (R1) was developed as a fluorescent chemosensor with high selectivity toward Cu2+ over other cations tested. The new probe R1 only sensed Cu2+ among heavy and transition metal (HTM) ions in CH3CN/H2O (70/30, v/v) solution. The capture of Cu2+ by the receptor resulted in deprotonation of the secondary amine conjugated to the triphenylamine, so that the electron-donation ability of the “N” atom would be greatly enhanced; thus sensor showed a 250 nm change in the new absorption band (from 291 nm to 541 nm) and a large colorimetric response, it also exhibited the large decrease in fluorescence intensity at 378 nm and affinity to Cu2+ over other cations such as Hg2+, Fe3+, Pb2+, Zn2+, Cd2+, Ni2+, Co2+ and Mn2+ make this compound a useful chemosensor for Cu2+ detection in CH3CN/H2O (70/30, v/v) mixture. The probe R1 (c = 1.0 × 10−6 M) displayed significant fluorescence change and colorimetric change upon addition of Cu2+ among the metal ions examined.  相似文献   
110.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize cysteine (Cys) in aqueous solution. The fluorescence enhancement of 1 was attributed to the cyclization reaction of 1 with Cys by 1:1 binding stoichiometry, which has been utilized as the basis of fabrication of the Cys-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Cys indicated that the methods can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Cys-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Cys with a linear range covering from 3.9 × 10−8 to 1.4 × 10−5 M and a detection limit of 7.8 × 10−9 M. And the chemosensor shows excellent selectivity for Cys over other amino acids. Moreover, the response of the chemosensor toward Cys is fast (response time less than 3 min). In addition, the chemosensor has been used for determination of Cys in serum samples with satisfactory results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号