首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   4篇
  国内免费   16篇
综合类   1篇
化学工业   58篇
金属工艺   66篇
机械仪表   1篇
建筑科学   5篇
矿业工程   8篇
能源动力   37篇
石油天然气   3篇
无线电   10篇
一般工业技术   33篇
冶金工业   11篇
自动化技术   3篇
  2023年   1篇
  2022年   6篇
  2021年   9篇
  2020年   2篇
  2019年   9篇
  2018年   7篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   11篇
  2013年   17篇
  2012年   15篇
  2011年   16篇
  2010年   18篇
  2009年   9篇
  2008年   20篇
  2007年   23篇
  2006年   15篇
  2005年   10篇
  2004年   4篇
  2003年   7篇
  2002年   6篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1965年   1篇
  1961年   1篇
  1958年   1篇
排序方式: 共有236条查询结果,搜索用时 31 毫秒
91.
In this study, a hydrometallurgical treatment involving the solvent extraction and recovery of some heavy metals from a sulphuric acid leach solution of galvanic sludge, using di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and bis-(2,4,4-trimethylpentyl)-phosphinic acid (Cyanex 272), both diluted in kerosene, has been investigated.

The preliminary tests revealed the necessity to remove other metal species than zinc and nickel, contained in the leach solution, and therefore, processes to cement copper and precipitate chromium were then applied to finally obtain a Zn and Ni pregnant solution prior to solvent extraction. For the experimental conditions studied, Cyanex 272 showed a good recovery of Zn after the stripping stage using H2SO4, but D2EHPA effectively promoted a higher Zn extraction than Cyanex 272 did. The dependence of the solvent extraction method on variables such as pH, contact time and concentration of extractant, as well as the effect of different concentrations of sulphuric acid on stripping, are discussed.

The discussion also includes the previous conditions developed to separate the main interfering metallic species from the leach solution in order to improve the extraction and recovery of zinc by solvent extraction. The final objective has been to achieve a solution as pure as possible to recover nickel sulphate.  相似文献   

92.
The present investigation was undertaken to shed light on the failure of some 90/10 CuNi condenser tubes in a MSF distiller. The tubes showed numerous tiny pits of unusual features. Particles of C were discovered inside the tubes and were suspected of initiating micro-galvanic cells leading to pitting. The study involved the measurement of open circuit potentials (OCP) of C and 90/10 and 70/30 CuNi electrodes in stagnant-, stirred-, natural- and synthetic seawaters at various temperatures. The way these changed with time till constant values were recorded was followed over long exposure times. The EMF of the C/CuNi galvanic cells varied between 400 and 450 mV. Contact between C and the copper alloys resulted in dissolution of copper, and the development of galvanic corrosion potentials and galvanic corrosion currents. These were discussed in the light of Evans corrosion diagrams. The study was extended to include the C/316 stainless steel system under similar conditions. The OCP behaviour of the steel electrode depended upon whether measurements were carried out in stagnant-, stirred-, natural- or synthetic seawaters. Galvanic coupling with C resulted in intensified pitting attack of steel in stagnant, artificial seawater. Similar measurements were conducted on the C/Ti couple. The anode reaction led to the thickening of TiO, Insignificant corrosion was recorded with the Ti/316 stainless steel system.  相似文献   
93.
Fast zinc dissolution is of industrial interest in recycling galvanised steel scraps. An acceleration of zinc corrosion in alkaline solutions was observed in the presence of various iron oxides or iron hydroxides. This corrosion was investigated by weight loss, measurements of hydrogen evolution and variation of current in a galvanic cell. The mechanism of this fast zinc corrosion was investigated by electrochemical means and by X-ray diffraction and scanning electron microscopy observations of zinc surface after immersion in alkaline suspensions of iron oxides or iron hydroxides. These insoluble iron compounds were involved in a reduction step leading to iron containing microparticles characterised by a low hydrogen overpotential and which acted as cathodic areas in a galvanic corrosion of zinc.  相似文献   
94.
The current research presented a novel type of stable and high-performance electrocatalyst for oxygen reduction reaction (ORR). For this purpose, N-micro/mesoporous carbon-supported Pt/Co nanoparticles (NPs) were synthesized through a two-step procedure. The Co–N-micro/mesoporous carbon support was first prepared by the direct carbonization of zeolitic imidazolate framework-67 (ZIF-67). Next, the N-micro/mesoporous carbon-supported Pt/Co NPs were synthesized by galvanic replacement of Pt (IV) ions with Co nanoparticles. The surface properties and chemical structure of the prepared electrocatalyst were measured by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), N2 adsorption-desorption, energy dispersive spectrometry (EDS) techniques. The results confirmed the desirable properties of the prepared electrocatalyst which enhanced the ORR kinetic. The ORR performance of the prepared electrocatalyst was examined utilizing the catalyst coated membrane electrode (CCME) in the homemade half-cell. The ORR performance of N-micro/mesoporous carbon-supported Pt/Co NPs loaded on the gas diffusion electrode (Pt/Co-NC-GDE) was evaluated in an acidic solution. The electrochemical tests exhibited the superior current density and power density of the Pt/Co-NC-GDE (?58.7 mAcm?2 at 0.3 V/RHE and 17.6 mW cm?2) compared to those of Pt/C-GDE (?43.7 mAcm?2, and 13.1 mW cm?2). Furthermore, durability tests indicated the higher stability of Pt/Co-NC-GDE than Pt/C-GDE.  相似文献   
95.
The alloy of NiPt nanoparticles was successfully synthesized by galvanic replacement method in which Ni nanoparticles used as the templates and H2PtCl6 solution as additional reagent. The preparation conditions of Ni nanoparticle were optimized. The effect of platinum contents on the structure, morphology, magnetic and electrocatalyst of NiPt was investigated. The phase analysis by XRD showed the presence of Ni and Pt crystalline phases on the alloy. The TEM images indicated that the NiPt nanoparticles had porous crystalline structure with grain size in the range of 25 nm–30 nm. Besides, composition analysis by EDX showed that the ratios of Ni and Pt were changed with a change of the amount of H2PtCl6 using for the galvanic reaction. The magnetic properties of NiPt nanoparticles change significantly with a change of Pt composition. The NiPt nanoparticles exhibit ferromagnetic behavior depending on the amount of Pt composition. In particular, saturation magnetization decreases from 6.5 emu/g to 4.0 emu/g with the decrease of Ni:Pt ratio from 57.0:3.6 to 57.0:8.1 respectively. With lower Ni:Pt ratio (57.0:18.0), the NiPt nanoparticles exhibits superparamagnetic properties. The magnetic properties were attributed to the formation of NiPt alloy in which the electrons transfer from Pt atoms to d band of Ni. The cyclic voltammetry measurement showed that NiPt nanoparticles exhibit better ethanol oxidation in alkali medium comparing with pure Platinum.  相似文献   
96.
Galvanic corrosion behaviour of copper and copper alloys in chloride solution (0.6?M NaCl) under different temperature conditions (35°C, 55°C and 80°C) was investigated by the wire beam electrode (WBE) method. It was found that the average galvanic current of the Cu and Cu–Sn alloy, which shifted from the cathode at 35°C to the anode at 80°C, increased as temperature increased during the immersion time. In contrast, the average galvanic current of Cu–Zn alloy can be ranked as 35°C?>?55°C?>?80°C. A sudden conversion was that the anode average current of Cu–Zn alloy at 35, 55°C changed into the cathode when the immersion time lasted untill 3 h at 80°C. The results indicate that it is feasible to study the corrosion behaviour under the different temperature environment with the WBE method.  相似文献   
97.
Electrochemical methods are attractive for thin film deposition due to their simplicity, conformal and high rate deposition, the ability to easily make multilayers of different composition, ease of scale-up to large surface areas, and applicability to wide variety of different shapes and surface geometries. However, many elements from periodic table of commercial importance are too active to be electrodeposited from aqueous solution. Recent advances are briefly reviewed for room temperature methods for electrochemical deposition, including electrodeposition from ionic liquids, electrodeposition from organic solvents, combined electrodeposition and precipitation on liquid metal cathodes, and galvanic deposition. Recent studies of electrodeposition from ionic liquids include deposition of thick (40 μm) Al coatings on high-strength steel screws in a manufacturing environment; deposition of continuous Si, Ta and Nb coatings; and numerous interesting mechanistic studies. Recent studies of electrodeposition from organic solvents include Al coatings from the AlCl3–dimethylsulfone electrolyte, which demonstrate that additives can be employed to suppress impurity incorporation and to improve the deposit quality, and thick (5–7 μm) and continuous Si coatings from SiCl4 in acetonitrile. Galvanic deposition of Ti, Mo and Si coatings onto Al alloys has recently been reported, which is potentially much simpler and less expensive than electrodeposition from ionic liquids and organic solvents, but has complications associated with substrate consumption and coating adhesion.  相似文献   
98.
Corrosion behaviour of multiwall carbon nanotube (MWNT) modified pure magnesium (Mg) composites (MWNT/Mg) prepared by melt stirring technique was investigated by weight loss, H2 gas collection and pH measurements, as well as electrochemical methods such as open circuit potential (OCP) monitoring, polarisation curves and electrochemical impedance spectroscopy (EIS). Results show that the corrosion rate of MWNT/Mg composites is significantly higher than the corrosion rate of pure Mg. The corrosion rate of the composites also depends on the degree of dispersion of MWNTs during melt stirring process. The role of the MWNTs in increasing the corrosion rate clearly can be attributed to their high cathodic activity. Characterization of the corrosion product layers indicates that dispersion of MWNTs in the matrix leads to a more homogeneous coverage of the surface by corrosion products, and the lowest thickness of the corrosion product layer. The corrosion product layers in all cases provide poor protection of the surface. The corrosion rate of pure Mg as well as Mg/MWNT composites significantly increases during 1-week immersion; this effect is the strongest for the composite with dispersed nanotubes and can be attributed to the increased cathodic kinetics with time.  相似文献   
99.
研究了作为牺牲阳极材料的Zn-Al-Cd合金在NaCl溶液中与A3钢、302不锈钢和纯铜偶接时的接触腐蚀行为,探讨了溶液中Cl-浓度变化,以及电偶对中阴极金属材料和阴阳极面积比Ac/Aa不同时对电偶电流密度jZng和电偶电势Eg的影响。结果表明,电偶对中阴极金属材料不同,jZng随Cl-浓度增大有不同的变化趋势;jZng与Ac/Aa成正比关系;Cl-浓度变化对Eg的影响较大,而大多数浓度下阴极金属材料和阴阳极面积比不同对Eg的影响较小  相似文献   
100.
埋地钢质输油管道阴极保护及其应用分析   总被引:2,自引:0,他引:2  
埋地钢质输油管道普遍存在电化学腐蚀,与此相应的电化学保护方法之一牺牲阳极阴极保护法得到了广泛应用。木文阐明了阴极保护方法的基本原理及其重要参数。对某油田埋地钢质输油管道阴极保护系统进行测试,并对测试数据进行了分析,指出不仅要在埋地钢质输油管道安装时注重电化学保护设计,而且在阴极保护系统工作时也要注重对其进行监测及维护,使阴极保护系统能长期有效地工作以达到牺牲阳极、阴极防腐之目的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号