首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2641篇
  免费   89篇
  国内免费   35篇
电工技术   13篇
综合类   91篇
化学工业   1971篇
金属工艺   18篇
机械仪表   37篇
建筑科学   26篇
矿业工程   1篇
能源动力   16篇
轻工业   52篇
水利工程   1篇
石油天然气   114篇
武器工业   1篇
无线电   36篇
一般工业技术   347篇
冶金工业   9篇
原子能技术   28篇
自动化技术   4篇
  2024年   5篇
  2023年   12篇
  2022年   24篇
  2021年   37篇
  2020年   35篇
  2019年   39篇
  2018年   31篇
  2017年   60篇
  2016年   46篇
  2015年   52篇
  2014年   84篇
  2013年   130篇
  2012年   168篇
  2011年   141篇
  2010年   110篇
  2009年   143篇
  2008年   130篇
  2007年   168篇
  2006年   189篇
  2005年   138篇
  2004年   132篇
  2003年   107篇
  2002年   110篇
  2001年   118篇
  2000年   94篇
  1999年   80篇
  1998年   61篇
  1997年   57篇
  1996年   33篇
  1995年   35篇
  1994年   23篇
  1993年   14篇
  1992年   21篇
  1991年   22篇
  1990年   11篇
  1989年   10篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   17篇
  1984年   23篇
  1983年   14篇
  1982年   17篇
排序方式: 共有2765条查询结果,搜索用时 15 毫秒
111.
ABSTRACT

Hydrophilic matrices are an interesting option when developing drug delivery systems. With this aim, hydroxypropyl methacrylate was grafted onto hydroxypropyl starch and hydroxypropyl cellulose substrates by following the Ce(IV) redox initiation method. Different amounts of ethyleneglycol dimethacrylate, 7 and 34 mol%, as the crosslinking monomer, were also added. The drying of grafted products was carried out by lyophilization, obtaining white powders. Reaction yields (percent grafting, grafting efficiency, etc.) and some physical characteristics of the powders (particle size, moisture uptake, density, morphology, etc.) were determined. These parameters indicate how useful these products may be as potential matrices for direct compressed tablets. In this light, the powder flowability and the binding properties of each copolymer were determined. The graft copolymers can be considered of great interest as direct compression excipients. Due to their different chemical structure and composition, they showed differences in viscoelastic properties that revealed an interesting range of possibilities for use in drug delivery formulations. Tablets formulated with conventional excipients were also tested. Dissolution tests of various tablets were carried out. In 12 hr, 60–80% of the model drugs was released.  相似文献   
112.
《分离科学与技术》2012,47(2):187-198
Abstract

The permeability constants of oxygen and carbon dioxide through hydrated potassium acrylate-grafted polyethylene films increase rapidly as the degree of hydration of the films increases above about 28 wt %. Below about 28 wt %, the carbon dioxide permeability constant increases with the degree of hydration. In the case of oxygen, the opposite is true.

The separation factor (CO2/O2) increases rapidly with film hydration up to about 28 wt %. Above this degree of hydration, the separation factor gradually approaches the value for pure water. An explanation for the results obtained is presented.  相似文献   
113.
Composite hydrogels consisting of nanofibrous bacterial cellulose (BC) embedded in a biocompatible polymeric matrix of various methacrylates were synthesized by UV polymerization using the ‘ever‐wet’ technique. The effect of monomer(s) type and ratio, system dilution at polymerization, monomer(s) hydrophilicity, crosslink density and cellulose/hydrogel ratio was investigated. The effect of BC reinforcement on equilibrium swelling depends on whether the neat gel swells more when brought into contact with water. The major improvement achieved by introduction of 1%–2% BC concerns mechanical properties. Compared with neat gels, the storage shear modulus G′ increased by a factor 10‐20, and the loss part G″ also rose significantly. The compression modulus ranged from 2 to 5.5 MPa for composites swollen to equilibrium (20‐70 wt% water). The BC‐hydrogel composites are considered for application in the tissue engineering area. Copyright © 2012 Society of Chemical Industry  相似文献   
114.
Tristable switching nonvolatile memory (NVM) devices based on graphene quantum dots (GQDs) sandwiched between multi-stacked poly (methyl methacrylate) (PMMA) layers were fabricated on indium-tin-oxide (ITO)-coated glass substrates by using a solution-processed method. Current-voltage (I-V) curves at 300 K for the silver nanowire/PMMA/GQD/PMMA/GQD/PMMA/ITO/glass devices showed tristable switching currents with high-resistance, intermediate-resistance, and low-resistance states. The device's cycling endurance of the three resistance states remained stable with a distinguishable value for each resistance state over 1000 cycles, and the obtained retention results showed well-distinguished resistance states without degradation for up to 1 × 104 s. Schottky emission, Poole-Frenkel emission, trapped-charge limited-current, and ohmic conduction were proposed as the dominant conduction mechanisms for the fabricated NVM devices based on the obtained I-V characteristics. The described energy-band diagrams confirm the proposed conduction band mechanisms.  相似文献   
115.
In this work, flame retardant systems comprising ammonium polyphosphate (AP423) and hydrophilic (A200) or hydrophobic (R805) nanometric silica were incorporated into PMMA. The following techniques were performed to detail the fire behaviour of the composites: mass loss cone calorimetry, pyrolysis‐combustion flow calorimetry, pyrolysis‐gas chromatography–mass spectrometry, thermogravimetric analysis, X‐ray diffraction analysis, Fourier transform infrared spectroscopy and microscopic observations. The best fire behaviour was obtained with the surface‐treated silica in the presence of AP423. The formation of a new crystalline phase from the interactions between AP423 and R805 silica and a strong barrier effect due to a layered residue were the main modes of action of this system. Moreover, we have shown that the difference between the AP423 + R805 and AP423 + A200 systems was due to poor dispersion of the silica into the PMMA matrix in the latter formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
116.
Cellulose nanocrystals (CNCs) are ideal reinforcing agents for polymer nanocomposites because they are lightweight and nano‐sized with a large aspect ratio and high elastic modulus. To overcome the poor compatibility of hydrophilic CNCs in non‐polar composite matrices, we grafted poly(methyl methacrylate) (PMMA) from the surface of CNCs using an aqueous, one‐pot, free radical polymerization method with ceric ammonium nitrate as the initiator. The hybrid nanoparticles were characterized by CP/MAS NMR, X‐ray photoelectron spectroscopy, infrared spectroscopy, contact angle, thermogravimetric analysis, X‐ray diffraction, and atomic force microscopy. Spectroscopy demonstrates that 0.11 g/g (11 wt %) PMMA is grafted from the CNC surface, giving PMMA‐g‐CNCs, which are similar in size and crystallinity to unmodified CNCs but have an onset of thermal degradation 45 °C lower. Nanocomposites were prepared by compounding unmodified CNCs and PMMA‐g‐CNCs (0.0025–0.02 g/g (0.25–2 wt %) loading) with PMMA using melt mixing and wet ball milling. CNCs improved the performance of melt‐mixed nanocomposites at 0.02 g/g (2 wt %) loading compared to the PMMA control, while lower loadings of CNCs and all loadings of PMMA‐g‐CNCs did not. The difference in Young's modulus between unmodified CNC and polymer‐grafted CNC composites was generally insignificant. Overall, ball‐milled composites had inferior mechanical and rheological properties compared to melt‐mixed composites. Scanning electron microscopy showed aggregation in the samples with CNCs, but more pronounced aggregation with PMMA‐g‐CNCs. Despite improving interfacial compatibility between the nanoparticles and the matrix, the effect of PMMA‐g‐CNC aggregation and decreased thermal stability dominated the composite performance.  相似文献   
117.
Diethyl-dithiocarbamic acid 2-[4-(2-diethylthiocarbamoylsulfanyl-2-phenyl-acetyl)-2,5-dioxo-piperazin-1-yl]-2-oxo-1-phenyl-ethyl ester as a novel di-functional reversible addition–fragmentation chain transfer (RAFT) agent was synthesized based on 2,5-diketopiperazine. The RAFT agent was designed based on the propagating core (R group) approach and characterized by 1H NMR, 13C NMR, FT-IR, elemental analysis, and melting point technique. Then, ethyl methacrylate was synthesized via free radical and RAFT polymerizations. To investigate the effect of the RAFT agent on the kinetic of polymerization, molecular weight, and polydispersity index (PDI) of polymers and also monomer conversion were monitored. Also, synthesized polymers were characterized by 1H NMR, 13C NMR, FT-IR, and TGA. Characterization analyses of synthesized RAFT agent were consistent with the structure. NMR and FTIR analyses confirmed end group incorporation of RAFT agent into polymer structure. According to results, poly(ethyl methacrylate) with low PDI (1.14) was obtained. Kinetic study indicated well-controlled polymerization of ethyl methacrylate by synthesized RAFT agent. TGA results showed that RAFT agent could reduce termination reactions and so reduce head-to-head bonds and chain-end unsaturation by keeping the concentration of radicals low enough.  相似文献   
118.
The progress in atom transfer radical polymerization (ATRP) provides an effective means for the design and preparation of functional membranes. Polymeric membranes with different macromolecular architectures applied in fuel cells, including block and graft copolymers are conveniently prepared via ATRP. Moreover, ATRP has also been widely used to introduce functionality onto the membrane surface to enhance its use in specific applications, such as antifouling, stimuli-responsive, adsorption function and pervaporation. In this review, the recent design and synthesis of advanced functional membranes via the ATRP technique are discussed in detail and their especial advantages are highlighted by selected examples extract the principles for preparation or modification of membranes using the ATRP methodology.  相似文献   
119.
Poly(vinylidene fluoride), PVDF, and its copolymers are the family of polymers with the highest dielectric constant and electroactive response, including piezoelectric, pyroelectric and ferroelectric effects. The electroactive properties are increasingly important in a wide range of applications such as in biomedicine, energy generation and storage, monitoring and control, and include the development of sensors and actuators, separator and filtration membranes and smart scaffolds, among others. For many of these applications the polymer should be in one of its electroactive phases. This review presents the developments and summarizes the main characteristics of the electroactive phases of PVDF and copolymers, indicates the different processing strategies as well as the way in which the phase content is identified and quantified. Additionally, recent advances in the development of electroactive composites allowing novel effects, such as magnetoelectric responses, and opening new applications areas are presented. Finally, some of the more interesting potential applications and processing challenges are discussed.  相似文献   
120.
This work focuses on the assessment of the erosion properties and antifouling (AF) performance of silyl ester copolymer-based coatings through laboratory and field tests. Silyl ester diblock copolymers were synthesized via the reversible addition-fragmentation chain transfer polymerization and were selected as binders for developing copper-free chemically active coatings. AF coatings were subsequently prepared using biocides (Sea-Nine™ 211, Preventol® A4S, and zinc pyrithione). Laboratory-based bioassays, targeting the growth of selected microorganisms (bacteria and microalgae) and barnacle settlement, highlighted that the silyl ester methacrylic-based binders did not inhibit the growth of microorganisms, are essentially non-toxic to nauplii and reduced the settlement of Amphibalanus amphitrite cyprids. The corresponding biocidal coatings are potent toward bacteria and diatoms but were demonstrated to be toxic against the barnacle larvae. Field test results showed variations with geographical locations: in sub-tropical area, the silyl ester methacrylic-based coatings failed to inhibit the settlement of barnacles; however, field tests performed in Mediterranean Sea for 18 months demonstrated that biocidal silyl ester methacrylic-based coatings were promising candidates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号