首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18483篇
  免费   1571篇
  国内免费   1546篇
电工技术   754篇
综合类   2518篇
化学工业   1711篇
金属工艺   1651篇
机械仪表   1031篇
建筑科学   1386篇
矿业工程   413篇
能源动力   827篇
轻工业   673篇
水利工程   673篇
石油天然气   748篇
武器工业   144篇
无线电   1370篇
一般工业技术   3416篇
冶金工业   731篇
原子能技术   206篇
自动化技术   3348篇
  2024年   55篇
  2023年   272篇
  2022年   332篇
  2021年   480篇
  2020年   531篇
  2019年   497篇
  2018年   437篇
  2017年   491篇
  2016年   534篇
  2015年   497篇
  2014年   781篇
  2013年   1049篇
  2012年   1055篇
  2011年   1321篇
  2010年   920篇
  2009年   1045篇
  2008年   1158篇
  2007年   1271篇
  2006年   1229篇
  2005年   1044篇
  2004年   910篇
  2003年   815篇
  2002年   657篇
  2001年   574篇
  2000年   569篇
  1999年   458篇
  1998年   412篇
  1997年   375篇
  1996年   347篇
  1995年   271篇
  1994年   235篇
  1993年   182篇
  1992年   174篇
  1991年   146篇
  1990年   129篇
  1989年   110篇
  1988年   79篇
  1987年   37篇
  1986年   24篇
  1985年   11篇
  1984年   15篇
  1983年   13篇
  1982年   8篇
  1981年   14篇
  1980年   4篇
  1979年   4篇
  1976年   3篇
  1974年   3篇
  1955年   5篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
城市是人为温室气体的最大排放源,是国家推进碳减排的基本单元和重要载体。面对日益严峻的气候挑战,一方面,各城市间合作程度与对标意愿不够,大多各自设定城市温室气体排放核算规则和制定相应的减缓政策;另一方面,不同的城市温室气体排放核算指南在核算边界、核算内容与重复计算、温室气体核算种类、核算方法等方面仍然存在差异。上述问题增加了城市温室气体排放核算结果分析的复杂性,不利于城市间温室气体排放核算结果的比较研究。城市温室气体排放核算方法框架,是了解和评估城市温室气体排放情况的基础。论文梳理了国内外城市温室气体排放核算指南、数据库和案例,研究内容涵盖国际城市温室气体核算标准对比与差异性分析,综述了基于3种不同的城市层面温室气体排放核算视角(即基于行政区划边界的核算、基于跨界基础设施的核算和基于城市消费的核算)的应用研究,指出了国内现已公布城市或区域性温室气体核算指南存在的无法对标的核心,提出构建优先面向国内可对标的城市温室气体排放核算方法框架。研究提出的框架的范围1~3代表不同角度的城市温室气体排放情况,同时又最大限度地反映了城市温室气体排放情况。首先,强调了行政区划内范围1排放的不可或缺性和可比性;其次,对范围2和范围3排放的核算,是对与充分满足城市实际需求相匹配的城市温室气体排放情况的具体补充。该框架解决了部分痛点问题,如核算边界应选取我国行政区划边界范围,应涵盖7种温室气体,包括范围1~3面向不同的核算排放主体;而针对当前各城市核算指南中部分排放源尚未涵盖或存在争议、实时动态数据获取难以及存在不确定性因素等问题,提出了相关思考和后续实现路径。以对标为目标的核算框架能够帮助决策管理者通过比较了解城市间隐含温室气体排放的流动情况,确定适宜的减排政策,同时从城市温室气体排放视角来考量、规划城市低碳转型路径,优化城市管理手段,促进城市间的交流合作。同时,该框架的有效实施也需要全社会、多行业、跨部门联动,政企民商通力合作,产学研深度融合。  相似文献   
992.
In the present article, a planar crack of arbitrary shape embedded in three-dimensional isotropic hygrothermoelastic media is investigated. Based on the general solutions and Hankel transform technique, the fundamental solutions for unit-point and extended displacement discontinuities (EDD; including the displacement discontinuities, moisture concentration discontinuity, and the temperature discontinuity) are derived. The EDD boundary integral equations for an arbitrarily shaped, planar crack in the hygrothermoelastic medium are established in terms of the EDD. Utilizing the boundary integral equation method, the singularities of near-crack front fields are analyzed, and the stress, moisture flux, and heat flux intensity factors are all derived in terms of the EDD. As a special case, the analytical solution for a penny-shaped crack under uniform combined loadings is presented. The EDD boundary element method is proposed for numerical simulation. The numerical result for a penny-shaped crack subjected to uniform mechanical–moisture–thermal loading is compared with the analytical solution to verify the correctness of the proposed method. Two coplanar elliptical cracks subjected to combined loadings are simulated as an application, and the influences of applied loadings and the ellipticity ratio are discussed.  相似文献   
993.
The influence of interstitial impurities such as B and C on the H-induced Fe Σ5(310) symmetrical tilt grain boundary embrittlement was investigated using the projector augmented-wave method. It was shown that in contrast to hydrogen, both boron and carbon decrease the grain boundary energy more significantly than the surface one. This results in an increase in the Griffith work, i.e. the grain boundary strengthening. The strengthening of grain boundary is more pronounced with increased number of B atoms whereas the increase of H concentration makes the process of intergranular brittle cleavage fracture easier. The grain boundary energy is lowered with an increased number of B atoms indicating a strong driving force for segregation. Our estimations of the Griffith work for the Fe Σ5(310) grain boundary containing both B and H atoms show an increase in comparison with the undoped grain boundary. It is revealed that improved cohesion of Fe Σ5(310) grain boundary due to B is mainly a chemical effect, whereas both elastic and chemical contributions to the Griffith work in case of H are negative, i.e. they are embrittling contributions.  相似文献   
994.
To support our increasing energy demand, steel pipelines are deployed in transporting oil and natural gas resources for long distances. However, numerous steel structures experience catastrophic failures due to the evolution of hydrogen from their service environments initiated by corrosion reactions and/or cathodic protection. This process results in deleterious effect on the mechanical strength of these ferrous steel structures and their principal components. The major sources of hydrogen in offshore/subsea pipeline installations are moisture as well as molecular water reduction resulting from cathodic protection. Hydrogen induced cracking comes into effect as a synergy of hydrogen concentration and stress level on susceptible steel materials, leading to severe hydrogen embrittlement (HE) scenarios. This usually manifests in the form of induced-crack episodes, e.g., hydrogen induced cracking (HIC), stress-oriented hydrogen induced cracking (SOHIC) and sulfide stress corrosion cracking (SSCC). In this work, we have outlined sources of hydrogen attack as well as their induced failure mechanisms. Several past and recent studies supporting them have also been highlighted in line with understanding of the effect of hydrogen on pipeline steel failure. Different experimental techniques such as Devanathan–Stachurski method, thermal desorption spectrometry, hydrogen microprint technique, electrochemical impedance spectroscopy and electrochemical noise have proven to be useful in investigating hydrogen damage in pipeline steels. This has also necessitated our coverage of relatively comprehensive assessments of the effect of hydrogen on contemporary high-strength pipeline steel processed by thermomechanical controlled rolling. The effect of HE on cleavage planes and/or grain boundaries has prompted in depth crystallographic texture analysis within this work as a very important parameter influencing the corrosion behavior of pipeline steels. More information regarding microstructure and grain boundary interaction effects have been presented as well as the mechanisms of crack interaction with microstructure. Since hydrogen degradation is accompanied by other corrosion-related causes, this review also addresses key corrosion causes affecting offshore pipeline structures fabricated from steel. We have enlisted and extensively discussed several recent corrosion mitigation trials and performance tests in various media at different thermal and pressure conditions.  相似文献   
995.
Steel components are required in the infrastructure and the facilities of the hydrogen economy. The high hydrogen pressures in the hydrogen economy lead to embrittlement and surface corrosion of the steels. For the functionality of the facilities it is necessary to suppress the embrittlement and the surface corrosion of the steels by protective layers, e.g. ceramic thin films. With regard to fusion power plants ceramic thin films on the structural steel materials are also required. These thin films work as a tritium permeation barrier that is necessary to prevent the loss of the radioactive fuel inventory. Oxide thin films, e.g. Al2O3, Er2O3, and Y2O3, are promising candidates as tritium permeation barrier layers. In terms of the application in the first wall, this is especially true for yttrium due to its favorably short decay time after neutron activation compared to the other candidates. The Y2O3 layers with thicknesses of 0.5 μm–1 μm are deposited on both substrate sides by RF magnetron sputter deposition. Since the microstructure of the barrier layer plays an important role for the permeation reduction, layers with three different magnetron process modes and thus three different microstructures are prepared. After annealing the cubic crystal structure of all thin films is verified by X-ray diffraction and the different microstructures are investigated by scanning electron microscopy and transmission electron microscopy. The Y2O3 stoichiometry of all thin films and a chromium oxide material segregation at the interface are verified by analysis methods such as X-ray photoelectron spectroscopy. The permeation reduction factors of all thin films are determined in gas-driven deuterium permeation experiments. Corresponding to the three different microstructures, reduction factors of 25, 45, and 1100 are identified. Thus, the permeation reduction is strongly dependent on the Y2O3 microstructure. The measurement results suggest that a high density of grain boundaries leads to a high hydrogen permeation.  相似文献   
996.
An analysis of the population genetics of Cryptolestes ferrugineus, across all major regions in Australia where grain is grown and stored in bulk, provides an initial step in investigating the movement of these insects and implications for the spread of phosphine resistance. Microsatellite data revealed two levels of genetic structure. Across Australia, two clusters were detected, one in eastern Australia (Queensland, New South Wales, Victoria and Tasmania) and Western Australia (Cluster 1) and one in South Australia (Cluster 2). Intermediate between them, in eastern South Australia, are a couple of populations that are equally admixed for the two clusters. Populations in Western Australia and western SA belong to different clusters suggesting that the extensive and arid Nullarbor Plain restricts the natural dispersal of these beetles. Isolation-by-distance and the detection of clustering among local populations suggests there is considerable gene flow at a local scale in C. ferrugineus, and we infer this is by flight. Limited natural gene flow between eastern and western Australia might, in part, explain why extremely high resistance has not been detected in Western Australia.  相似文献   
997.
This paper introduces an evolutionary algorithm, Shuffled Frog Leaping Algorithm (SFLA), to solve the optimization problem in designing the multi-pumped Raman Fibre Amplifier (RFA). SFLA is a powerful optimizer tool because of its efficient mathematical expressions and global search capability. We utilize SFLA to determine the optimal pump wavelengths and pump powers by minimizing the gain ripple of RFA. To accelerate calculations, a terminal value optimization strategy (TVOS) is incorporated into the evolution of SFLA. This proposed strategy takes the terminal power values of pumps as the decision variables in optimization. Then, the optimal original power values of the pumps are obtained by solving the Power Coupled Equations once, without using the traditional method of repetitive guesses.The combination of SFLA and TVOS enhances the efficiency of optimization and accelerates calculation, while satisfying the design requirements of RFA.The simulation results show that nearly 65% of computational time has been saved compared with the traditional average power analysis. The 4-pumped C+L band of backward multi-pumped RFA with the average net gain of 0 dB, 1 dB and 2 dB are designed individually, where the gain ripple is less than 0.64 dB. The combination of SFLA and TVOS enhance the optimization efficiency and improve the performance of RFA with good gain profile.  相似文献   
998.
A complete characterization of the stability boundary of an asymptotically stable equilibrium point in the presence of type-k saddle-node non-hyperbolic equilibrium points, with k ≥ 0, on the stability boundary is developed in this paper. Under the transversality condition, it is shown that the stability boundary is composed of the stable manifolds of the hyperbolic equilibrium points on the stability boundary, the stable manifolds of type-0 saddle-node equilibrium points on the stability boundary and the stable centre and centre manifolds of the type-r saddle-node equilibrium points with r ≥ 1 on the stability boundary. This characterization is the first step to understanding the behaviour of stability regions and stability boundaries in the occurrence of saddle-node bifurcations on the stability boundary.  相似文献   
999.
Attitudinal Choquet integral (ACI) extends Choquet integral (CI) through a consideration of a decision-maker's (DM's) attitudinal character. In this paper, we generalize ACI, and the resulting operator is termed as generalized ACI (GACI). GACI adds to the efficacy of the ACI in the representation of a DM's unique and complex attitudinal character. It also generates a vast range of exponential ACI operators, such as harmonic ACI, ACI, quadratic ACI, to name a few. We further present induced GACI to consider additional information that may be associated with the arguments of aggregation. The special cases of the proposed operators are investigated. The usefulness of the proposed operators in modelling human decision behavior is shown through a case study.  相似文献   
1000.
A new family of attitudinal discrete choice models is proposed by considering the attitudinal character and the weight vector, both of which are specific to a decision maker (DM). Given the attribute values of different alternatives, the proposed models give varying choice probabilities, as per the DM's-specific attitudinal character and the weight vector. It is also shown that the conventional discrete choice models are the special cases of the proposed attitudinal models. The proposed choice models are also generalized through an additional parameter to add to their capabilities. An application on real data is included to demonstrate their usefulness in the real world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号