首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1102篇
  免费   95篇
  国内免费   71篇
电工技术   43篇
综合类   151篇
化学工业   19篇
金属工艺   7篇
机械仪表   42篇
建筑科学   14篇
矿业工程   1篇
能源动力   7篇
轻工业   24篇
水利工程   5篇
石油天然气   5篇
武器工业   6篇
无线电   153篇
一般工业技术   180篇
冶金工业   4篇
原子能技术   9篇
自动化技术   598篇
  2024年   5篇
  2023年   9篇
  2022年   12篇
  2021年   7篇
  2020年   16篇
  2019年   25篇
  2018年   36篇
  2017年   23篇
  2016年   36篇
  2015年   40篇
  2014年   50篇
  2013年   80篇
  2012年   101篇
  2011年   90篇
  2010年   42篇
  2009年   58篇
  2008年   65篇
  2007年   48篇
  2006年   58篇
  2005年   44篇
  2004年   43篇
  2003年   39篇
  2002年   38篇
  2001年   29篇
  2000年   26篇
  1999年   22篇
  1998年   27篇
  1997年   30篇
  1996年   20篇
  1995年   20篇
  1994年   22篇
  1993年   19篇
  1992年   20篇
  1991年   9篇
  1990年   9篇
  1989年   11篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   2篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1268条查询结果,搜索用时 15 毫秒
41.
用二次插值实现近似弧长参数化   总被引:1,自引:0,他引:1  
分段二次Hermite插值用来保单调地反插值参数曲线的弧长函数.所作近似弧长参数化曲线在插值节点处,近似弧长是精确的,并且具有与精确弧长参数曲线同方向的单位切矢.在整个近似弧长参数区间,近似弧长的误差可达到0(△t)^2(△t为节点步长).数值实例得到了很好的结果.  相似文献   
42.
43.
Summary In this paper, we investigate the discretization of an elliptic boundary value problem in 3D by means of the hp-version of the finite element method using a mesh of tetrahedrons. We present several bases based on integrated Jacobi polynomials in which the element stiffness matrix has nonzero entries, where p denotes the polynomial degree. The proof of the sparsity requires the assistance of computer algebra software. Several numerical experiments show the efficiency of the proposed bases for higher polynomial degrees p.   相似文献   
44.
Let D=K[X]D=K[X] be a ring of Ore polynomials over a field KK and let a partition of the set of indeterminates into pp disjoint subsets be fixed. Considering DD as a filtered ring with the natural pp-dimensional filtration, we introduce a special type of reduction in a free DD-module and develop the corresponding Gröbner basis technique (in particular, we obtain a generalization of the Buchberger Algorithm). Using such a modification of the Gröbner basis method, we prove the existence of a Hilbert-type dimension polynomial in pp variables associated with a finitely generated filtered DD-module, give a method of computation and describe invariants of such a polynomial. The results obtained are applied in differential algebra where the classical theorems on differential dimension polynomials are generalized to the case of differential structures with several basic sets of derivation operators.  相似文献   
45.
46.
A new method for the numerical solution of non linear parabolic equations is presented. The method is an extension of an existing algorithm for linear equations. Solutions are obtained in the form of a Chebyshev series, which is produced by approximating the partial differential equation by a set of ordinary differential equations over a small time interval. The method appears to be both accurate and economical.  相似文献   
47.
A method of numerical solution of singular integral equations of the first kind with logarithmic singularities in their kernels along the integration interval is proposed. This method is based on the reduction of these equations to equivalent singular integral equations with Cauchy-type singularities in their kernels and the application to the latter of the methods of numerical solution, based on the use of an appropriate numerical integration rule for the reduction to a system of linear algebraic equations. The aforementioned method is presented in two forms giving slightly different numerical results. Furthermore, numerical applications of the proposed methods are made. Some further possibilities are finally investigated  相似文献   
48.
《国际计算机数学杂志》2012,89(10):2291-2302
In this paper, we develop a new method for G 1 continuous interpolation of an arbitrary sequence of points on an implicit or parametric surface with a specified tangent direction at every point. Based on the normal projection method, we design a G 1 continuous curve in three-dimensional space and then project orthogonally the curves onto the given surface. With the techniques in classical differential geometry, we derive a system of differential equations characterizing the projection curve. The resulting interpolation curve is obtained by numerically solving the initial-value problems for a system of first-order ordinary differential equations in the parametric domain associated to the surface representation for a parametric case or in three-dimensional space for an implicit case. Several shape parameters are introduced into the resulting curve, which can be used in subsequent interactive modification such that the shape of the resulting curve meets our demand. The presented method is independent of the geometry and parameterization of the base surface, and numerical experiments demonstrate that it is effective and potentially useful in surface trim, robot, patterns design on surface and other industrial and research fields.  相似文献   
49.
A Taylor collocation method is presented for numerically solving the system of high-order linear Fredholm–Volterra integro-differential equations in terms of Taylor polynomials. Using the Taylor collocations points, the method transforms the system of linear integro-differential equations (IDEs) and the given conditions into a matrix equation in the unknown Taylor coefficients. The Taylor coefficients can be found easily, and hence the Taylor polynomial approach can be applied. This method is also valid for the systems of differential and integral equations. Numerical examples are presented to illusturate the accuracy of the method. The symbolic algebra program Maple is used to prove the results.  相似文献   
50.
《国际计算机数学杂志》2012,89(8):1453-1472
In this paper, we develop a general approach for estimating and bounding the error committed when higher-order ordinary differential equations (ODEs) are approximated by means of the coefficients perturbation methods. This class of methods was specially devised for the solution of Schrödinger equation by Ixaru in 1984. The basic principle of perturbation methods is to find the exact solution of an approximation problem obtained from the original one by perturbing the coefficients of the ODE, as well as any supplementary condition associated to it. Recently, the first author obtained practical formulae for calculating tight error bounds for the perturbation methods when this technique is applied to second-order ODEs. This paper extends those results to the case of differential equations of arbitrary order, subjected to some specified initial or boundary conditions. The results of this paper apply to any perturbation-based numerical technique such as the segmented Tau method, piecewise collocation, Constant and Linear perturbation. We will focus on the Tau method and present numerical examples that illustrate the accuracy of our results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号