首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50915篇
  免费   3980篇
  国内免费   2832篇
电工技术   860篇
综合类   4149篇
化学工业   11018篇
金属工艺   6663篇
机械仪表   2882篇
建筑科学   9466篇
矿业工程   2065篇
能源动力   916篇
轻工业   2356篇
水利工程   1460篇
石油天然气   1354篇
武器工业   321篇
无线电   974篇
一般工业技术   8963篇
冶金工业   3159篇
原子能技术   231篇
自动化技术   890篇
  2024年   156篇
  2023年   757篇
  2022年   1416篇
  2021年   1803篇
  2020年   1612篇
  2019年   1418篇
  2018年   1511篇
  2017年   1903篇
  2016年   1944篇
  2015年   2271篇
  2014年   3136篇
  2013年   3649篇
  2012年   3400篇
  2011年   4098篇
  2010年   2800篇
  2009年   2890篇
  2008年   2552篇
  2007年   2955篇
  2006年   2700篇
  2005年   2320篇
  2004年   1981篇
  2003年   1785篇
  2002年   1532篇
  2001年   1236篇
  2000年   1092篇
  1999年   932篇
  1998年   737篇
  1997年   630篇
  1996年   538篇
  1995年   440篇
  1994年   356篇
  1993年   280篇
  1992年   199篇
  1991年   147篇
  1990年   135篇
  1989年   121篇
  1988年   69篇
  1987年   57篇
  1986年   18篇
  1985年   23篇
  1984年   19篇
  1983年   16篇
  1982年   28篇
  1981年   11篇
  1980年   16篇
  1979年   18篇
  1964年   4篇
  1961年   2篇
  1959年   2篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
In this study, two dimensional (2D) and quasi three-dimensional (quasi-3D) shear deformation theories are presented for static and free vibration analysis of single-layer functionally graded (FG) plates using a new hyperbolic shape function. The material of the plate is inhomogeneous and the material properties assumed to vary continuously in the thickness direction by three different distributions; power-law, exponential and Mori–Tanaka model, in terms of the volume fractions of the constituents. The fundamental governing equations which take into account the effects of both transverse shear and normal stresses are derived through the Hamilton's principle. The closed form solutions are obtained by using Navier technique and then fundamental frequencies are found by solving the results of eigenvalue problems. In-plane stress components have been obtained by the constitutive equations of composite plates. The transverse stress components have been obtained by integrating the three-dimensional stress equilibrium equations in the thickness direction of the plate. The accuracy of the present method is demonstrated by comparisons with the different 2D, 3D and quasi-3D solutions available in the literature.  相似文献   
42.
This paper addresses the nonlinear stress-strain response in glass fibre non-crimp fabric reinforced vinylester composite laminates subjected to in-plane tensile loading. The nonlinearity is shown to be a combination of brittle and plastic failure. It is argued that the shift from plastic to brittle behaviour in the vinylester is caused by the state of stress triaxiality caused by the interaction between fibre and vinylester. A model combining damage and plasticity is calibrated and evaluated using data from extensive experimental testing. The onset of damage is predicted using the Puck failure criterion, and the evolution of damage is calibrated from the observed softening in plies loaded in transverse tension. Shear loading beyond linear elastic response is observed to result in irreversible strains. A yield criterion is implemented for shear deformation. A strain hardening law is fitted to the stress-strain response observed in shear loaded plies. Experimental results from a selection of laminates with different layups are used to verify the numerical models. A complete set of model parameters for predicting elastic behaviour, strength and post failure softening is presented for glass fibre non-crimped fabric reinforced vinylester. The predicted behaviour from using these model parameters are shown to be in good agreement with experimental results.  相似文献   
43.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
44.
The micromechanics models for composites usually underpredict the tensile strength of polymer nanocomposites. This paper establishes a simple model based on Kelly–Tyson theory for tensile strength of polymer/CNT nanocomposites assuming the effect of interphase between polymer and CNT. In addition, Pukanszky model is joined with the suggested model to calculate the interfacial shear strength (τ), interphase strength (σi) and critical length of CNT (Lc).The proposed approach is applied to calculate τ, σi and Lc for various samples from recent literature. It is revealed that the experimental data are well fitted to calculations by new model which confirm the important effect of interphase on the properties of nanocomposites. Moreover, the derived equations demonstrate that dissimilar correlations are found between τ and B (from Pukanszky model) as well as Lc and B. It is shown that a large B value obtained by strong interfacial adhesion between polymer and CNT is adequate to reduce Lc in polymer/CNT nanocomposites.  相似文献   
45.
In this study, 0.95?Sr0.7Ba0.3Nb2O6-0.05CaTiO3-x wt% Er2O3 ceramics (SBNCTEx; x?=?0–5) were synthesized using traditional solid-state method, and we investigated the microstructure, energy storage properties as well as the relationship between dielectric breakdown strength and interfacial polarization. As compared with pure 0.95?Sr0.7Ba0.3Nb2O6-0.05CaTiO3 ceramics, the Er2O3 dopants suppressed the grain growth of SBNCTEx, and the doped ones showed the dense microstructure. The secondary phase was found for x?≥?1 according to the EDS results, and the influence of the secondary phase on relative dielectric breakdown strength has also been studied. The dielectric breakdown strength increased from 18.1?kV/mm to 34.4?kV/mm, which is good for energy storage. The energy storage density of 0.28?J/cm3 and the energy storage efficiency of 91.4% were obtained in the SBNCTE5 ceramics. The results indicate that SBNCTE ceramics can be used as energy storage capacitors.  相似文献   
46.
《Ceramics International》2021,47(22):31413-31422
Based on reactive air brazing (RAB), we designed a new type of sealant (Ag–xCuAlO2) for joining 3 mol.% yttria-stabilized zirconia (YSZ) ceramics and AISI 310S stainless steel. The CuAlO2 content affected the wettability of the sealant on the YSZ surface, and the joints had a high shear strength when Ag–2 wt.%CuAlO2, which had a small contact angle on the YSZ substrate, was used as the sealant. In addition, the thickness of the oxide layer was reduced compared to that for the Ag–CuO sealant. The effects of the processing parameters on the microstructure and shear strength of the joints were investigated, and the as-brazed joints reached their highest shear strength (93.7 MPa) when brazed at 1040 °C for 30 min. After high-temperature oxidation at 800 °C for 200 h, the shear strength of the joints remained at 50 MPa, and no apparent change in the microstructure was observed, proving that the joints possessed excellent oxidation resistance.  相似文献   
47.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   
48.
《Ceramics International》2022,48(18):26022-26027
Aluminum nitride (AlN) is used a ceramic heater material for the semiconductor industry. Because extremely high temperatures are required to achieve dense AlN components, sintering aids such as Y2O3 are typically added to reduce the sintering temperature and time. To further reduce the sintering temperature, in this study, a low-melting-temperature glass (MgO–CaO–Al2O3–SiO2; MCAS) was used as a sintering additive for AlN. With MCAS addition, fully dense AlN was obtained by hot-press sintering at 1500 °C for 3 h at 30 MPa. The mechanical properties, thermal conductivity, and volume resistance of the sintered AlN–MCAS sample were evaluated and compared with those of a reference sample (AlN prepared with 5 wt% Y2O3 sintering aid sintered at 1750 °C for 8 h at 10 MPa). The thermal conductivity of AlN prepared with 0.5 wt% MCAS was 91.2 W/m?K, which was 84.8 W/m?K lower than that of the reference sample at 25 °C; however, the difference in thermal conductivity between the samples was only 14.2 W/m?K at the ceramic-heater operating temperature of 500 °C. The flexural strength of AlN–MCAS was 550 MPa, which was higher than that of the reference sample (425 MPa); this was attributed to the smaller grain size achieved by low-temperature sintering. The volume resistance of AlN–MCAS was lower than that of the reference sample in the range of 200–400 °C. However, the resistivity of the proposed AlN–MCAS sample was higher than that of the reference sample (500 °C) owing to grain-boundary scattering of phonons. In summary, the proposed sintering strategy produces AlN materials for heater applications with low production cost, while achieving the properties required by the semiconductor industry.  相似文献   
49.
《Ceramics International》2022,48(9):12790-12799
The ablation behavior of high-entropy ceramics (HECs) was investigated in this study using an oxyacetylene flame at 2000 °C. Spark plasma sintering was used to construct a dense HEC (TiZrHfNbTa)C with a 20 vol% of SiC addition (HEC-20SiC). The densification of HEC-20SiC can be improved to a certain extent by adding SiC particles, increasing the hardness of HEC-20SiC to up to 24.6 GPa, and the crack deflection observed through the addition of SiC particles were considered to be the strengthening and toughening mechanisms. After ablation, Hf6Ta2O17, Ti5.1Ta4.9O20, Nb2Zr6O17, TaZr2.75O8, and SiO2 can be detected on an ablated surface and HEC-20SiC possesses the minimum mass ablation rate (?1.9 mg s?1) and line ablation rate (2.1 μm s?1) among the comparative ceramics. On the one hand, the SiC phase forms gaseous CO, CO2, and SiO as well as viscous SiO2 during ablation and some part of the heat can be dissipated by the evaporation of gaseous CO, CO2, and SiO; further, pore defects can be healed by viscous SiO2, thus inhibiting the diffusion of reactive oxygen species. On the other hand, the HEC phase with a lattice-distortion caused by single-phase solid-solution can effectively inhibit the invasion of reactive oxygen species and the outward migration of metal atoms. The invasion rate of reactive oxygen is considered to be the main step during HEC-20SiC ablation, and it is believed that higher principal component HECs can improve ablation performance even further.  相似文献   
50.
《Ceramics International》2021,47(23):33259-33268
The demand for high-performance grinding wheels is gradually increasing due to rapid industrial development. Vitrified bond diamond composite is a versatile material for grinding wheels used in the backside grinding step of Si wafer production. However, the properties of the vitrified bond diamond composite are controlled by the characteristics of the diamond particles, the vitrified bond, and pores and are very complicated. The main objective of this study was to investigate the effects of SiO2–Na2O–B2O3–Al2O3–Li2O–K2O–CaO–MgO–ZrO2–TiO2–Bi2O3 glass powder on the sintering, microstructure, and mechanical properties of the vitrified bond diamond composite. The elemental distributions of the composite were analyzed using electron probe micro-analysis (EPMA) to clarify the diffusion behaviors of various elements during sintering.The results showed that the relative density and transverse rupture strength of the composite sintered at 620 °C were 91.7% and 126 MPa, respectively. After sintering at 680 °C, the glass powder used in this study exhibited a superior forming ability without an additional pore foaming agent. The relative density and transverse rupture strength of the composite decreased to 48.2% and 49 MPa, respectively. Moreover, the low sintering temperature of this glass powder protected the diamond particles from graphitization during sintering, as determined by X-ray diffraction and Raman spectrum. Furthermore, the EPMA results indicate that Na diffused and segregated at the interface between the diamond particles and vitrified bond, contributing to the improved bonding. The diamond particles can remain effectively bonded by the vitrified bond even after fracture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号