全文获取类型
收费全文 | 153360篇 |
免费 | 9736篇 |
国内免费 | 8548篇 |
专业分类
电工技术 | 7381篇 |
技术理论 | 3篇 |
综合类 | 9871篇 |
化学工业 | 34461篇 |
金属工艺 | 14202篇 |
机械仪表 | 5513篇 |
建筑科学 | 3486篇 |
矿业工程 | 3657篇 |
能源动力 | 2330篇 |
轻工业 | 9029篇 |
水利工程 | 1313篇 |
石油天然气 | 7361篇 |
武器工业 | 1366篇 |
无线电 | 23391篇 |
一般工业技术 | 15808篇 |
冶金工业 | 7417篇 |
原子能技术 | 2224篇 |
自动化技术 | 22831篇 |
出版年
2025年 | 41篇 |
2024年 | 2482篇 |
2023年 | 4321篇 |
2022年 | 5353篇 |
2021年 | 5705篇 |
2020年 | 5240篇 |
2019年 | 4455篇 |
2018年 | 2523篇 |
2017年 | 3614篇 |
2016年 | 4526篇 |
2015年 | 4882篇 |
2014年 | 6077篇 |
2013年 | 7549篇 |
2012年 | 8308篇 |
2011年 | 9121篇 |
2010年 | 9003篇 |
2009年 | 9359篇 |
2008年 | 9797篇 |
2007年 | 9229篇 |
2006年 | 8764篇 |
2005年 | 9417篇 |
2004年 | 8615篇 |
2003年 | 7048篇 |
2002年 | 5679篇 |
2001年 | 4575篇 |
2000年 | 3203篇 |
1999年 | 1992篇 |
1998年 | 1596篇 |
1997年 | 1214篇 |
1996年 | 1228篇 |
1995年 | 993篇 |
1994年 | 982篇 |
1993年 | 602篇 |
1992年 | 756篇 |
1991年 | 818篇 |
1990年 | 830篇 |
1989年 | 1083篇 |
1988年 | 163篇 |
1987年 | 100篇 |
1986年 | 96篇 |
1985年 | 66篇 |
1984年 | 56篇 |
1983年 | 31篇 |
1982年 | 53篇 |
1981年 | 60篇 |
1980年 | 18篇 |
1979年 | 3篇 |
1959年 | 3篇 |
1951年 | 15篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
采用固相合成法制备出系列Fe掺杂的Bi2Sr2Co2Oy,样品,并对样品进行XRD分析,电阻率(p)、热电势(固和顺磁共振研究。结果表明:Fe掺杂浓度x≤0.3时样品基本为单相。Fe掺杂使体系的电阻率略微增大,热电势显著升高,这可能与Fe掺杂降低了空穴载流子浓度有关。Fe掺杂浓度x=0.05样品获得最大的功率因子(power factor,S^2/P)。顺磁共振结果显示,不掺Fe的样品有着较强的顺磁共振(ESR)信号,随着Fe含量的增加,ESR信号向低频方向移动,并逐渐宽化减弱直至消失。这表明Fe掺杂改变了体系的自旋关联状态,占据了Co位参与了Co—O—Co之间的自旋关联。研究结果表明合适的元素掺杂可以有效地调整体系的自旋关联状态,改善材料的热电性能。 相似文献
962.
研究了三元层状化合物钛硅碳(Ti3SiC2)和钛铝碳(Ti3AlC2)材料的载流磨损特性,探讨了在大电流、热应力和摩擦力的交互和耦合作用下Ti3SiC2系材料的支配性磨损机理。试验在盘一块式大功率载流高速摩擦试验机上进行,用A3钢盘为对磨体;滑动速度为20m/s,法向压强为0.4~0.8MPa,电流强度为0.50和100A。结果表明,在适当的速度和载荷条件下,Ti3SiC2系材料表现出良好的载流摩擦学特性。但载流条件下的磨损率都比非载流条件下的大,且随电流强度而增大。通过SEM&EDS观察、分析,载流条件下的Ti3SiC2系材料的磨损主要由微电弧烧蚀与机械摩擦的交互作用及热-力耦合作用两部分共同影响。微电弧烧蚀作用引起Ti3SiC2系材料表层氧化、熔融和分解以及亚表层裂纹,因而耐磨性发生改变。通电条件下的电热效应和摩擦热的耦合作用也对Ti3SiC2系材料的耐磨性产生影响。力-电-热的交互和耦合作用哪部分占主导机制取决于Ti3SiC2系材料的物理参数及载荷、速度等外部条件因素。 相似文献
963.
利用Gleeble 3500热模拟实验机,在800~1100℃、10~90min和6-20MPa条件下对Ti3SiC2和Ni进行真空扩散连接。通过正交实验,研究了连接温度、连接压力和高温保温时间对试样连接强度的影响,优选出最佳工艺参数。结果表明,扩散连接工艺参数显著影响Ti3SiC2/Ni接头的剪切强度。在1000℃、10min和20MPa实验条件下,获得的Ti3SiC2/Ni接头的剪切强度达到(121±7)MPa,接近Ti3SiC2陶瓷的剪切强度。 相似文献
964.
用氩弧熔化焊接方法,在无焊料的情况下对铜/钛铝锡碳(Cu/Ti3AlSn0.2C1.8)金属陶瓷材料进行直接熔焊连接。观察分析了焊接区及其附近的组织变化,测试了焊接区的室温弯曲强度。结果表明,Cu/Ti3AlSn0.2C1.8材料具有良好的可焊接性。焊接区域呈网络状Cu(Ti,Al,Sn)合金包围均匀弥散的细小TjG颗粒的典型组织结构。在适当的电弧电流密度、拉弧时间和施加压力等焊接条件下,焊接区的室温弯曲强度达到851MPa,焊接区的弯曲强度达到或超过了Cu/Ti3AlSn0.2C1.8材料自身的强度。 相似文献
965.
利用钛酸丁酯为原料,通过80℃下强迫水解的方法在微米级铜粉表面制备了TiO2光阴极保护涂层。XPS分析表明包覆铜粉的表面存在Cu^2+,Ti^4+,Sn^2+元素,场发射扫描电镜观察表明,100nm左右的TiO2颗粒覆盖在铜粉表面形成纳米/微米复合结构。TG-DTA分析表明,原始铜粉在200℃开始氧化,而包覆铜粉在400℃以后才开始氧化。铜粉在酸性介质中的耐蚀性通过测定腐蚀溶液的Cu^2+浓度来衡量,结果表明包覆铜粉的腐蚀失重远低于原始铜粉。在紫外和可见光照射下的浸蚀对比实验结果表明,紫外光照射能够加剧原始铜粉的腐蚀,而包覆铜粉由于表面TiO2的光阴极保护作用显示出良好的耐蚀性。 相似文献
966.
铁氮共掺杂纳米TiO2的水热法制备及其在可见光下抗菌性能的研究 总被引:2,自引:0,他引:2
以硫酸氧钛为前驱体,硝酸铁和盐酸胍作为掺杂的铁源和氮源,采用水热法制备了铁氮共掺杂纳米TiO2粉体。利用XRD、BET对样品进行表征,研究了掺杂后TiO2粉体的晶型、粒径、比表面积等性能。结果表明,所制备的共掺杂TiO2粉体呈黄色,均为锐钛矿相TiO2,经谢尔公式计算其粒径约为10nm,比表面积分布为(135~150)m^2/g。采用紫外.可见光漫反射光谱对样品进行表征,结果表明经过铁氮共掺杂改性后的TiO2具有很强的紫外线的吸收能力,并实现了良好的可见光响应。采用菌落计数法进行了样品抗菌性能的研究,在可见光照射下样品对大肠杆菌表现出良好的杀灭性能。 相似文献
967.
为了使钛合金(Ti-6Al-4V)具有生物活性,可在其表面施加生物活性羟基磷灰石(HA)涂层。对比了声电沉积法和碱热处理法实验结果,采用扫描电镜(SEM)、X射线衍射仪(XRD)、电子能谱(EDS)、傅立叶红外透射光谱(FTIR)以及划痕测试等进行了分析。结果表明,直接采用声电沉积法在钛合金表面制备的羟基磷灰石涂层,经热处理后存在龟裂剥落现象;通过碱热处理法,对钛合金基体表面进行预处理,然后,借助声电沉积法,在钛金属表面沉积了透钙磷石涂层,经热碱液处理转变成的羟基磷灰石涂层,涂层完整,未出现剥落。经进一步高温烧结处理,所制涂层仍呈片状形貌,其由部分含钠的羟基磷灰石组成,而且HA涂层破坏的临界载荷未烧结前的4.365N提高至烧结后的8.175N。 相似文献
968.
以Bi(NO3)3·5H2O和Ti(OC4H9)4为原料,NaOH为矿化剂,采用水热法制备了形貌规则的单晶Bi4Ti3O12纳米片。X射线衍射(XRD)结果表明,所合成的产物为正交相层状钙钛矿结构的Bi4Ti3O12。场发射扫描电子显微镜(FESEM)研究显示:样品是由大量边缘尺寸接近200nm,厚度约为15nm的片状结构组成。利用X射线光电子能谱(XPS)研究产物的化学组分和价态分布。室温拉曼光谱研究表明,Bi4Ti3O12纳米片的声子寿命和热稳定性低于相应的块体材料。 相似文献
969.
双氧水改性二氧化钛的光催化性能研究 总被引:1,自引:0,他引:1
研究了用微乳法制备纳米二氧化钛粉末的工艺,以及在紫外光照射下,TiO2和H2O2分别以及两者结合对于甲基橙溶液的降解作用。结果表明用微乳法可以制备粒度为23.2nm的纳米TiO2粉末;在紫外光照射下,H2O2可以有效地降解甲基橙溶液;当H2O2浓度从1mmol/L增加到10mmol/L,甲基橙的吸光度直线下降;当H2O2浓度达到10mmol/L时,降解率可以达到99%;TiO2也可以有效地降解甲崔橙溶液,当TiO2的浓度为0.50~0.75g/L时,降解率最大;用H2O2对TiO2进行改性后,可以有效地降解甲基橙溶液,固定TiO2的量为0.5g/L时,当H202浓度为4mmol/L时,甲基橙溶液的吸光度达到最低;当H2O2浓度处于10mmol/L以上时,甲基橙溶液的吸光度却出现无规则的变化。 相似文献
970.
采用溶胶-凝胶法制备了Al2O3-ZrO2(3Y)-Spinel纳米复合粉体,其颗粒大小为20-30nm,粒度分布均匀,无硬团聚。采用真空热压烧结工艺制备了纳米复相陶瓷,结果表明:由于纳米复合粉体中的第二相阻止了基体Al2O3的致密化,纳米复合粉体的烧结温度较普通微米粉体相比并没有大幅度降低,其合适的烧结温度为1450~1500℃。烧结体的超塑性压缩试验表明:在1500℃材料表现出良好的超塑变形能力,变形抗力小于30MPa。在整个压缩变形过程中,材料没有出现明显的应变软化,显示出与超塑性拉伸变形截然不同的特性。 相似文献