首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51333篇
  免费   5227篇
  国内免费   5300篇
电工技术   1159篇
综合类   3022篇
化学工业   3753篇
金属工艺   25443篇
机械仪表   2851篇
建筑科学   774篇
矿业工程   1286篇
能源动力   1164篇
轻工业   439篇
水利工程   271篇
石油天然气   1071篇
武器工业   717篇
无线电   1786篇
一般工业技术   9916篇
冶金工业   5662篇
原子能技术   430篇
自动化技术   2116篇
  2024年   298篇
  2023年   975篇
  2022年   1556篇
  2021年   1807篇
  2020年   1967篇
  2019年   1555篇
  2018年   1584篇
  2017年   1961篇
  2016年   1775篇
  2015年   1854篇
  2014年   2646篇
  2013年   2725篇
  2012年   3182篇
  2011年   3916篇
  2010年   2847篇
  2009年   3115篇
  2008年   2536篇
  2007年   3546篇
  2006年   3506篇
  2005年   2846篇
  2004年   2478篇
  2003年   2094篇
  2002年   1719篇
  2001年   1562篇
  2000年   1307篇
  1999年   1152篇
  1998年   862篇
  1997年   839篇
  1996年   810篇
  1995年   594篇
  1994年   534篇
  1993年   375篇
  1992年   351篇
  1991年   267篇
  1990年   231篇
  1989年   192篇
  1988年   102篇
  1987年   46篇
  1986年   24篇
  1985年   10篇
  1984年   21篇
  1983年   12篇
  1982年   22篇
  1981年   15篇
  1980年   8篇
  1978年   10篇
  1976年   5篇
  1975年   3篇
  1959年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
研究了轧制变形量对WSTi544221合金棒材显微组织和力学性能的影响,并对Φ10 mm规格的棒材进行不同制度的固溶+时效处理,对比了不同热处理状态下棒材的组织和力学性能。结果表明,随着轧制变形量的增大,WSTi544221合金棒材的晶粒细化程度增大,强度逐渐提高,但塑性变化不大。经870℃×1 h/WC+520℃×6 h/AC固溶+时效处理后,强度与塑性可以获得良好匹配,当抗拉强度达到1 610 MPa、屈服强度达到1 531 MPa时,延伸率和断面收缩率可分别保持在12%和43%。  相似文献   
22.
A simple and low‐cost method for designing and fabricating concentration‐gradient generators with two and three inlets is proposed which can generate different concentration gradients at varying flow velocities. The microchannel structure was designed in S‐shape and left‐right symmetry. The concentration‐gradient generator was simulated based on the finite element method. The microchannels were processed on a computer numerical control (CNC) engraving and milling machine on poly(methylmethacrylate) substrate, and then two concentration‐gradient generators were fabricated by hot bonding technology. The results of experiment and simulation were compared to prove the feasibility of the method. Flow velocity was an important factor for generating different concentration gradients. The concentration‐gradient profiles of the generators with two and three inlets present approximately linear and quadratic curves.  相似文献   
23.
High-entropy alloys (HEAs), as a new class of metallic materials, have received more and more attention due to its excellent mechanical properties. In this study, the hydrogen absorption properties, such as hydrogen absorption capacity, thermodynamics, kinetics and cyclic properties, as well as the hydride structure of a newly designed TiZrNbTa HEA were investigated. The results showed that multiple hydrides including ε-ZrH2, ε-TiH2 and β-(Nb,Ta)H were found in the TiZrNbTa HEA after hydrogenation. With the increase of temperature from 293 K to 493 K, the maximum hydrogen absorption capacity decreased from 1.67 wt% to 1.25 wt% and the plateau pressure related with β-(Nb,Ta)H hydrides increased from 1.6 kPa to 14.8 kPa. The formation enthalpy of β-(Nb,Ta)H hydride was determined to be −6.4 kJ/mol, which was less stable than that of NbH and TaH hydrides. The results also showed that the TiZrNbTa HEA exhibited a rapid hydrogen absorption kinetic even at the room temperature with a short incubation time, and the hydrogen absorption mechanism was determined to be the nucleation and growth mechanism. Moreover, the hydrogen absorption capacity at 293 K decreased slowly with the cycle numbers, and remained 86% capacity after 10 cycles. Cracking occurred after hydrogen absorption and became worse with cycles.  相似文献   
24.
In order to improve the process effectiveness and joint quality, ultrasonic vibrations were integrated with friction stir lap welding. Effect of ultrasonic exertion on the process and joint quality of AA 6061-T6 were investigated. Upon ultrasonic exertion, joints owned larger effective lap width, shorter hooks and improved strength. Weld fracture mode changed from a ductile–brittle mixed mode to a more ductile mode while the fracture path shifted from lap interface to beyond the stir zone. Material flow and interface defects were characterised using lap welded dissimilar aluminium alloy joints. Ultrasonic vibration improved the material flow and reduced the interfacial defects. Variations in failure load of joints were found in accordance with the variations in material flow and interfacial defects.  相似文献   
25.
Fatigue crack growth behaviour of Ti–6Al–2Zr–1.5Mo–1.5V (VT-20 a near-α Ti alloy) was studied in lamellar, bimodal and acicular microstructural conditions. Fatigue crack growth tests at both increasing and decreasing stress intensity factor range values were performed at ambient temperature and a loading ratio of 0.3 using compact tension samples. Lamellar and acicular microstructures showed lower fatigue crack growth rates as compared to the bimodal microstructure due to the tortuous nature of cracks in the former and the cleavage of primary α in the latter. The threshold stress intensity factor range was highest for acicular microstructure.  相似文献   
26.
The feasibility of microbial hydrogen consumption to mitigate the hydrogen embrittlement (HE) under different cathodic potentials was evaluated using the Devanathan-Stachurski electrochemical test and the hydrogen permeation efficiency η. The hydrogen permeation efficiency η in the presence of strain GA-1 was lower than that in sterile medium. The cathodic potential inhibited the adherence of strain GA-1 to AISI 4135 steel surface, thereby reducing the hydrogen consumption of strain GA-1. The adherent GA-1 cells were capable of consuming ‘cathodic hydrogen’ and reducing the proportions of absorbed hydrogen, indicating that it is theoretically possible to control HE by hydrogen-consuming microbes.  相似文献   
27.
Although Mg alloy attracts great attention for engineering applications because of high specific strength and low density, low corrosion resistance limits its extensive use. In this study, Mg–Al–Zn–Mn alloy was treated via a laser cladding process to generate a dense and compact laser cladding layer with solid metallurgical bonding on the substrate for improving corrosion resistance, effectively hindering the corrosion pervasion into Mg alloy. The corrosion current density declined from 103 μA/cm2 for Mg alloy to 13 μA/cm2 for the laser cladding layer in NaCl aqueous solution. Moreover, the laser cladding layer was slightly corroded in comparison with Mg alloy in NaCl aqueous solution. Besides, the microhardness of the cladding layer reached a mean value of 170.5 HV, 3.1 times of Mg alloy (56.8 HV) due to the in situ formation of hardening intermetallic phases. Wear resistance of laser cladding layer was also obviously improved. These results demonstrated that the laser cladding layer obviously enhanced anticorrosion property of Mg alloy for engineering applications.  相似文献   
28.
Although Mg alloy possesses high specific strength, low density, and good biocompatibility, poor corrosion resistance hinders its further applications. In the present study, an innovative protective layer against corrosion was prepared on the AZ31 Mg alloy via alkali pretreatment followed by vanillic acid treatment. The alkali pretreatment supplied –OH for the AZ31 Mg alloy surface to react with vanillic acid. The vanillic acid treatment played a crucial role in enhancing the corrosion resistance due to the excellent ability to act as a barrier and retard aqueous solution penetration, which effectively isolated the underlying Mg alloy from the corrosive environment. The corrosion current density of alkali and vanillic acid-treated Mg alloy (AZ31V) almost showed two orders of magnitude lower values in comparison with that of the AZ31 Mg alloy, and the corrosion potential of AZ31V Mg alloy increased from −1.41 to −1.25 V. The immersion tests proved that there was no occurrence of severe corrosion. Hence, the alkali pretreatment and vanillic acid treatment may represent a promising method to improve the corrosion resistance of Mg alloy.  相似文献   
29.
The paper analyses the corrosion behaviour of naturally and artificially aged AA2024 alloy in NaCl solution and in the presence of an environment-friendly corrosion inhibitor, CeCl3. On the basis of the values of polarisation resistance and corrosion current density, the corrosion resistance of the protective inhibitor film is established as well as the general corrosion resistance of this aluminium alloy. Resistance to pit formation is determined based on the difference in pitting and corrosion potentials while resistance to pit growth is determined based on the amount of charge consumed during pit growth. A scanning electron microscope is used to examine the morphology of the pits formed during the pitting corrosion testing, as well as to determine the cerium content on intermetallic particles and the matrix AA2024 alloy. The corrosion behaviour of AA2024 alloy is investigated after different test periods in NaCl solution and in the same solution with the CeCl3 inhibitor. The corrosion resistance of both tempers of AA2024 alloy is more than one order of magnitude higher in the presence of CeCl3. An explanation of the observed differences in the corrosion behaviour of the naturally and artificially aged AA2024 alloy is proposed. Different corrosion behaviour of the alloy after different test periods is also explained.  相似文献   
30.
Oil shales and coals occur in Cenozoic rift basins in central and northern Thailand. Thermally immature outcrops of these rocks may constitute analogues for source rocks which have generated oil in several of these rift basins. A total of 56 oil shale and coal samples were collected from eight different basins and analysed in detail in this study. The samples were analysed for their content of total organic carbon (TOC) and elemental composition. Source rock quality was determined by Rock‐Eval pyrolysis. Reflected light microscopy was used to analyse the organic matter (maceral) composition of the rocks, and the thermal maturity was determined by vitrinite reflectance (VR) measurements. In addition to the 56 samples, VR measurements were carried out in three wells from two oil‐producing basins and VR gradients were constructed. Rock‐Eval screening data from one of the wells is also presented. The oil shales were deposited in freshwater (to brackish) lakes with a high preservation potential (TOC contents up to 44.18 wt%). They contain abundant lamalginite and principally algal‐derived fluorescing amorphous organic matter followed by liptodetrinite and telalginite (Botryococcus‐type). Huminite may be present in subordinate amounts. The coals are completely dominated by huminite and were formed in freshwater mires. VR values from 0.38 to 0.47%Ro show that the exposed coals are thermally immature. VR values from the associated oil shales are suppressed by 0.11 to 0.28%Ro. The oil shales have H/C ratios >1.43, and Hydrogen Index (HI) values are generally >400 mg HC/g TOC and may reach 704 mg HC/ gTOC. In general, the coals have H/C ratios between about 0.80 and 0.90, and the HI values vary considerably from approximately 50 to 300 mg HC/gTOC. The HImax of the coals, which represent the true source rock potential, range from ~160 to 310 mg HC/g TOC indicating a potential for oil/gas and oil generation. The steep VR curves from the oil‐producing basins reflect high geothermal gradients of ~62°C/km and ~92°C/km. The depth to the top oil window for the oil shales at a VR of ~0.70%Ro is determined to be between ~1100 m and 1800 m depending on the geothermal gradient. The kerogen composition of the oil shales and the high geothermal gradients result in narrow oil windows, possibly spanning only ~300 to 400 m in the warmest basins. The effective oil window of the coals is estimated to start from ~0.82 to 0.98%Ro and burial depths of ~1300 to 1400 m (~92°C/km) and ~2100 to 2300 m (~62°C/km) are necessary for efficient oil expulsion to occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号