首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   14篇
  国内免费   9篇
电工技术   1篇
综合类   2篇
化学工业   23篇
金属工艺   2篇
机械仪表   7篇
建筑科学   4篇
能源动力   30篇
轻工业   1篇
水利工程   12篇
石油天然气   1篇
武器工业   1篇
一般工业技术   11篇
冶金工业   5篇
原子能技术   11篇
自动化技术   6篇
  2024年   2篇
  2023年   7篇
  2022年   16篇
  2021年   11篇
  2020年   10篇
  2019年   9篇
  2018年   6篇
  2017年   12篇
  2016年   9篇
  2015年   6篇
  2014年   8篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2008年   2篇
  2006年   1篇
  1959年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
11.
In this work the relationship between multiphase computational fluid dynamics models and population balance models is illustrated by deriving the main governing equations from the generalized population balance equation. The resulting set of equations, consisting of the well known two-fluid model coupled with a bivariate population balance model, is then implemented in the CFD code OpenFOAM. The implementation is used to simulate a particular multiphase problem: bubbly flow in a rectangular column. Results show that, although the different mesoscale models for drag force, coalescence, breakup and mass transfer, can be improved, the agreement with experiments is nevertheless good. Moreover, although the problem investigated is quite complex, as the evolution of bubbles is solved in real-space, time and phase-space (i.e. bubble size and composition) the resulting computational costs are reasonable. This is due to the fact that the bivariate population balance model is solved here with the so-called conditional quadrature method of moments, that very efficiently deals with these problems. The overall approach is demonstrated to be efficient and robust and is therefore suitable for the simulation of many polydisperse multiphase flows.  相似文献   
12.
Emulsion flows are very common in natural processes as well as in several engineering areas, such as in the process of desalting crude oil that occurs in refineries. This kind of flow is described as a polydispersed multiphase flow. In this work, we evaluated the behavior of water-in-oil emulsion flowing through a duct with an element used to mimic the effect of a globe valve. An Eulerian multi-fluid approach was employed by solving the population balance equation coupled with computational fluid dynamics. Coalescence and breakage models recently developed were extended to this inhomogeneous model. A bivariate population balance problem was also solved to demonstrate the mixing caused by the valve-like element. The simulated results showed good agreement with the available experimental data for the Sauter and DeBroukere mean diameters.  相似文献   
13.
The internal structure of continuous casting tundish is complex, and the flow state of molten steel is diverse. Detailed and accurate information of molten steel flow field is the premise of tundish control and optimization. Numerical simulation method has been widely used in the study of molten steel flow field in tundish. The accurate numerical simulation of molten steel flow field is inseparable from the appropriate turbulence model and the corresponding boundary conditions. Based on the CFD open source code OpenFOAM v8, three different types of turbulence models (standard k-ε model, RNG k-ε model, and SST k-ω model) were applied to simulate the molten steel flow in the tundish. Additionally, two boundary conditions of symmetry plane and the free slip were also applied. Comparing the simulation results to the experimental data, it shows the RTD curve obtained by the simulation with the SST k-ω model can successfully predict the "double peaks" that appeared in the experiment. Besides, the response time and peak value time are closest to that of experimental results. For SST k-ω, when changing the type of liquid surface boundary from free slip to symmetrical plane, the error of tracer response time obtained is reduced from 93.89% to less than 8.35%, and the error of peak time is reduced from 100.78% to about 12.32%. It can be concluded that the SST k-ω model and the symmetry boundary are applicable for the simulation of molten steel flow in the tundish.  相似文献   
14.
A model is presented that describes the main physical phenomena affecting in the performance of a Solid-Oxide Fuel Cell (SOFC). The implementation of the model uses an in-house algorithm in a computational fluid-dynamics (CFD) framework that may be used to optimize the SOFC operational parameters. The physical phenomena considered in the model are: (i) mass conservation: multicomponent and multimodal mass transfer in gas channels and electrodes (convection, ordinary diffusion, Knudsen diffusion); (ii) momentum conservation in the gas channels and electrodes; (iii) energy conservation: coupled heat transfer across the whole cell (gas channels, electrodes and electrolyte); (iv) electrochemistry: half-reactions are considered to take place at the electrode-electrolyte interfaces, and activation losses are computed using the general version of the Butler-Volmer equation. The main features of this CFD tool are: (i) it allows the prediction of the characteristic (I-V) curve of an H2-fed cell; (ii) it is suitable for both tubular and planar cells; (iii) it has been implemented using OpenFOAM-1.5-dev, an open-source CFD-platform based on the Finite Volume Method.The numerical results are validated with published experimental I-V curves for a hydrogen-fed anode-supported micro-tubular SOFC, and a numerical analysis of the influence of different operation conditions on the temperature distribution is performed to procure a better understanding of the heat management of the cell.  相似文献   
15.
This paper describes the design of a new kind of miniature abrading sphere, which is magnetically mounted inside a spherical gap and set in rotation pneumatically with air. Large eddy simulation is performed in conjunction with the compressible Smagorinsky model. Minimal temperature variation allows for the assumption of adiabatic walls. Fluid-solid interaction is modeled using the law of the wall for compressible turbulent flow. A parametric study is done to determine optimal geometric layout while taking physical restrictions into account. The resulting optimal configuration is then examined in detail in order to determine demands to be met by the computerized control of the magnetic bearing as well as to quantify the force available to the abrasion process. Finally, a mathematical relation is given that determines available abrasion force depending on standard volumetric flow rate and rotation frequency. The findings presented here provide a basis for further development of smaller versions of the tool.  相似文献   
16.
Injecting hydrogen into the natural gas network to reduce CO2 emissions in the EU residential sector is considered a critical element of the zero CO2 emissions target for 2050. Burning natural gas and hydrogen mixtures has potential risks, the main one being the flame flashback phenomenon that could occur in home appliances using premixed laminar burners. In the present study, two-dimensional transient computations of laminar CH4 + air and CH4 + H2 + air flames are performed with the open-source CFD code OpenFOAM. A finite rate chemistry based solver is used to compute reaction rates and the laminar reacting flow. Starting from a flame stabilized at the rim of a cylindrical tube burner, the inlet bulk velocity of the premixture is gradually reduced to observe flashback. The results of the present work concern the effects of wall temperature and hydrogen addition on the flashback propensity of laminar premixed methane-hydrogen-air flames. Complete sequences of flame dynamics with gradual increases of premixture velocity are investigated. At the flame flashback velocities, strong oscillations at the flame leading edge emerge, causing broken flame symmetry and finally flame flashback. The numerical results reveal that flashback tendency increase with increasing wall temperature and hydrogen addition rate.  相似文献   
17.
This paper focuses on thermal destratification and pressurisation inside thermally stratified storage tanks by continuous gas bubbling. The primary purpose of doing these studies is to better understand the effect of bubble dynamics on thermal destratification and quantify the extent of destratification. The volume of fluid and interface compression method of OpenFOAM CFD code is utilised for the present analysis. Different values of inlet gas velocities (Vg), orifice diameters (do), and arrangement of the orifices in triangular and square fashion with different pitches (p/do) are considered. In addition, the effect of gravitational forces (g/ge) on thermal destratification is also reported. For all these cases, the effectiveness of thermal destratification is quantified in terms of a newly defined parameter, the destratification index (Id). For Vg = 1 m/s, the Id value is maximum compared to lower Vg values. It is seen that when the gas velocity increased from 0.3 m/s to 1.0 m/s, the average effectiveness in thermal destratification (Idavg) and pressure at the ullage increased by 44.38% and by 64.81%, respectively. The Idavg and pressure at ullage increased by 96.29% and 14.91%, respectively, when the g/ge ratio changed from 0.3 to 3. Compared to the triangular arrangement with p/do = 10, the calculated Idavg increased by 30.67% when gas inlets were arranged with a square pitch of 10. For p/do = 4, 6 and 8, the increments in Idavg are of the order of 12.86%, 19.43% and 21.92%, respectively, for gas inlets arranged in a square fashion as compared to the triangular arrangement. It is found that continuous bubbling with gas inlets arranged in square pitch p/do = 10 gives higher effectiveness in thermal destratification. Thus, by these studies, one can develop a thermal destratification mechanism with continuous bubbling for optimum performance. Also, these studies give an overall idea of sparger design for getting the correct gas flow rate for thermal destratification within the cryogenic liquid storage tanks.  相似文献   
18.
The DCRFoam solver (density-based compressible solver) built on the OpenFOAM platform is used to simulate the reflection and diffraction processes that occur when detonation waves collide with various objects. Static stoichiometric hydrogen–oxygen mixtures diluted with 70% Ar are used to form stable detonation waves with large cells, with initial conditions of 6.67 kPa pressure and 298 K temperature. The diameters of the cylindrical obstacle range from 6 mm to 22 mm, with x = 230 mm, x = 244 mm, and x = 257 mm being the chosen position. Cylindrical, square, triangular, and inverted triangular obstacles are used, and the quenched detonation re-initiation processes behind them are investigated. In the detonation diffraction process, four triple points exist at the same time due to the effect of cylindrical obstacles of smaller diameters. The re-initiation distance of the detonation wave increases with the increase of cylindrical obstacle diameter. Both the Mach reflection angle and the decoupled angle decrease as the diameter increases. When the location of the cylindrical obstacles is changed, the detonation wave dashes into the obstacles with its different front structures, it is easier to realize the detonation re-initiation when the weak incident shock at the front of a detonation wave strikes the obstacles, and the re-initiation distance decreases by 17.1% when compared with the longest re-initiation distance. The detonation re-initiation distance is shortest under the action of cylindrical obstacles, however the quenched detonation cannot be re-initiated when the inverted triangle and square obstacles are used. The suppression effects of inverted triangle and square obstacles on detonation waves are more evident.  相似文献   
19.
Mixing by gas injection is an operation used in industrial processes such as wastewater treatment, metallurgy, or methanization in which pressurized gas is injected into a fluid in order to reduce concentrations and temperatures gradients. This study demonstrates how the CFD toolbox OpenFOAM can be used to simulate such flows. Experimental measurements and observations have been performed on a pilot-scale reactor where pressurized air is injected in a yield stress fluid. The volume of fluid method and an adaptive mesh with refinement at the interface have been used to track the gas inclusions. The numerical model accuracy has been assessed by comparing experimental and numerical results related to the bubble's frequency, dimensions, and rising velocities as well as the fluid recirculation, yielded, and unyielded regions in the tank. The influence of injection parameters such as the injection flow rate and the fluid rheological parameters has been quantified.  相似文献   
20.
风剪切下风力机组俯仰控制策略研究   总被引:1,自引:0,他引:1  
为增加风电场总输出功率,采用大涡模拟(LES)方法,利用致动线法(ALM),基于开源CFD软件OpenFOAM对风剪切下的风力机组4种风轮俯仰工况进行数值模拟,对比每种工况下的风电场总输出功率,并结合流场参数分析输出功率存在差别的内在原因.结果表明:风电场上游风力机尾迹可对下游风力机性能产生严重影响;风轮俯仰角增加时,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号