首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   24篇
金属工艺   7篇
能源动力   17篇
轻工业   2篇
一般工业技术   2篇
自动化技术   2篇
  2023年   3篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   9篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有56条查询结果,搜索用时 531 毫秒
41.
The oxygen reduction reaction (ORR) was investigated on carbon (XC-72) supported platinum nanoparticles, generated via the carbonyl chemical route and on oxide composites supported platinum generated via the UV-photo-deposition technique in sulfuric acid medium. The behavior of Pt/C was examined using a careful dosing of the catalyst loading spanning the range from 4.3 to 131 μg cm−2. The ORR electrochemical response of Pt/C (in line with recent literature data) is put into contrast with the Pt/oxide-composite systems. Our results point out that it is possible to use smaller amounts of catalyst for the ORR when platinum atoms interact with the oxide (anatase) surface of the substrate composite. Evidence of the incipient metal-substrate interaction is discussed in the light of the results of XRD experiments.  相似文献   
42.
The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step, 2-electron pathways of O2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and RDE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BDD) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide.  相似文献   
43.
The structure, surface composition and activity/selectivity for ethanol oxidation of carbon supported Pt alloy catalysts with different composition and catalyst loading, which were synthesized via the polyol-route, were investigated and characterized by microscopic/spectroscopic methods (TEM, EDX, XRD) and electrochemical (RDE, on-line DEMS) measurements under well-defined transport and diffusion conditions. The performance of the polyol-type Pt/C (20 wt.%), PtRu/C (20, 40 and 60 wt.%), and Pt3Sn/C (20 wt.%) catalysts was compared with that of commercial Pt/C, PtRu/C and Pt3Sn/C (E-Tek) catalysts. The metal particle sizes of the polyol-type catalysts are significantly smaller than those of the corresponding commercial catalysts, nevertheless both the mass specific activities and, more pronounced, the inherent, active surface area specific activities are lower than those of the commercial catalysts, which is related to the lower degree of alloy formation in the polyol-type catalysts. For all catalysts, incomplete ethanol oxidation to C2 products (acetaldehyde and acetic acid) prevails under conditions of this study, CO2 formation contributes by ≤1% for potentiostatic reaction conditions. The lower activity of the polyol-type catalysts is mainly due to the lower activity for acetaldehyde formation. Implications and further strategies for fuel cell applications are discussed.  相似文献   
44.
The electrodeposition of tin at a (0.28 cm2) copper surface from 0.014 mol dm−3 SnSO4 and 12.5 vol.% methanesulfonic acid (MSA 1.93 mol dm−3) at 296 K was studied. Hydroquinone concentrations of 0.005, 0.05 and 0.5 mol dm−3 (corresponding to a molar concentration ratio of hydroquinone to stannous ions of 0.36, 3.6 and 36, respectively) were used. Cyclic and linear sweep voltammetry served to characterise the electrochemical behaviour of tin deposition and stripping. The effects of potential sweep rate and electrode rotation speed on the voltammetry were studied. The stability of the electrolyte with storage time was quantified by changes in the limiting current density for tin deposition at a smooth rotating disc electrode and the peak current density at a static disc electrode. The influence of hydroquinone on mass transport controlled tin deposition and suppression of hydrogen evolution was evaluated.  相似文献   
45.
Uncovering the mind-sets of consumers towards food safety messages   总被引:1,自引:0,他引:1  
Knowing the specific characteristics which trigger a strong sense of safe versus unsafe allows risk communicators to reach consumers effectively with targeted messages. Using experimental design of ideas and conjoint measurement, we assessed consumer interest in and perceived safety of food characteristics that consumers think to be important when they make a purchase decision. The study identified the specific characteristics and the associated phrasing. The data generate a database by which we understand the perceptions of risk. In turn the database shows how these risk perceptions vary by conventional subgroups (age, gender, ethnicity), and by different mind-sets that exist in the population. The results combine insights about acceptance with insights about safety, answering questions that could not have been previously addressed in this efficient, quantitative way. The study is the first in a series designed to create a large-scale database of safety for food, beverage, and eating situation, based on the perceptions of consumers. The study opens up a new area for consumer understanding dealing with the perception of intangible topics including safety, compliance, and ‘good-for-you’.  相似文献   
46.
47.
Active, carbon-supported Ir-V nanoparticle catalysts have been synthesized by an ethylene glycol reduction method under controlled conditions at pH 10-13 and 120 °C, then further reduced at elevated temperature from 150 to 500 °C using IrCl3 and NH4VO3 as the Ir and V precursors. The nanostructured catalysts have been characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM). Ir nanoparticles, after modification with V, show a narrow particle size distribution in the range 0.5-4.5 nm, centered at 1.8 nm, and are uniformly dispersed on Vulcan XC-72. No particle agglomeration was observed, not even at high V loadings (V:Ir = 4:1 in atomic ratio). Investigation of the catalytic activity of the Ir-V/C by means of cyclic voltammetry (CV) and linear sweep voltammetry (LSV) employing a rotating disk electrode (RDE) has revealed that the presence of V may suppress the electrochemical oxidation of Ir and stabilize the Ir active centers. About six times higher kinetic current density was obtained for Ir-V/C compared to that of the pure Ir/C catalyst at 0.8 V versus RHE for the oxygen reduction reaction (ORR). The ORR in acid solution proceeds by an approximately four-electron pathway, through which molecular oxygen is directly reduced to water. The performance of a membrane electrode assembly (MEA) prepared with the most active 40% Ir-10% V/C as the cathode catalyst in a single proton-exchange membrane fuel cell (PEMFC) generated a maximum power density of 517 mW cm−2 at 0.431 V and 70 °C, and 100 h of stable cell operation due to no loss of catalyst sites on the cathode.  相似文献   
48.
研究轻型车辆碳排放测算方法,分析车辆碳排放与运行工况关系。基于车辆实际行驶污染物排放(Real Drive Emission, RDE)车载测试数据,以CO2当量CO2e代表碳排放,分析得出碳排放速率随车速、比功率(Vehicle Specific Power, VSP)增大而上升;运用BP (Back Propagation)神经网络算法建立车辆碳排放与车速、加速度、比功率多参数间非线性关系测算模型,计算得出世界轻型车测试循环(World Light Vehicle Test Cycle,WLTC)、新欧洲行驶循环(New European Driving Cycle, NEDC)和中国轻型商用车行驶工况(China Light-duty Vehicle Test Cycle-commercial Car,CLTC-C)3种台架测试循环工况下的碳排放因子。比较发现3种台架测试循环工况下的碳排放因子均高于实际道路行驶碳排放因子,其中WLTC下碳排放因子最高,其次是NEDC,再是CLTC-C,原因是加速度越大、车速越高的测试工况导致碳排放增加。  相似文献   
49.
A mesoporous carbon (MP) supported Pt nanocatalyst was evaluated as anode and cathode catalyst for PEM fuel cell. Kinetics study of the oxygen reduction reaction were characterized by using the rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) techniques in acid media. Membrane electrode assemblies (MEAs) were prepared using Pt supported on MP as anodic and cathodic catalysts and the fuel cell performance evaluated. Polarization and power curves show a similar performance as cathode catalyst when compared to commercial catalyst while there is an 8% improvement when used as anode catalyst.  相似文献   
50.
Enhancing the activity and stability of the non-precious metal catalyst (NPMC) for oxygen reduction reaction (ORR) is vital for the commercialization of fuel cells. Herein, we put forward a method in which the melamine formaldehyderesin was used as a precursor to encapsulate in situ Co2O3 into carbon black to form Co2O3@MF-C catalysts. The prepared catalysts were characterized by TEM, XRD, XPS, BET, and Raman spectroscopy. The electrocatalytic activity was measured by using rotating disk electrode (RDE) voltammetry. The Co2O3@MF-Cs shows outstanding electrocatalytic activity in alkaline solution compared with the commercial Pt/C catalyst. The 20%Co2O3@MF-C-650 shows the highest activity for ORR and its initial reduction potential and half-wave potential reach 1.01 V and 0.94 V, respectively, in 0.1 M KOH solution. The prepared catalysts also follow the 4-electron pathway ORR process both in alkaline and in acid conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号