首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70067篇
  免费   7625篇
  国内免费   2664篇
电工技术   1044篇
技术理论   1篇
综合类   2815篇
化学工业   25965篇
金属工艺   10094篇
机械仪表   1272篇
建筑科学   1950篇
矿业工程   960篇
能源动力   1377篇
轻工业   9711篇
水利工程   376篇
石油天然气   1093篇
武器工业   335篇
无线电   2660篇
一般工业技术   16325篇
冶金工业   3214篇
原子能技术   259篇
自动化技术   905篇
  2024年   497篇
  2023年   1702篇
  2022年   2379篇
  2021年   3168篇
  2020年   3049篇
  2019年   2566篇
  2018年   2884篇
  2017年   3233篇
  2016年   3255篇
  2015年   3361篇
  2014年   3965篇
  2013年   5098篇
  2012年   4422篇
  2011年   5501篇
  2010年   3700篇
  2009年   4031篇
  2008年   3333篇
  2007年   3654篇
  2006年   3451篇
  2005年   2706篇
  2004年   2636篇
  2003年   2270篇
  2002年   1830篇
  2001年   1243篇
  2000年   1138篇
  1999年   871篇
  1998年   777篇
  1997年   678篇
  1996年   502篇
  1995年   453篇
  1994年   328篇
  1993年   240篇
  1992年   247篇
  1991年   197篇
  1990年   242篇
  1989年   236篇
  1988年   84篇
  1987年   57篇
  1986年   59篇
  1985年   69篇
  1984年   67篇
  1983年   34篇
  1982年   55篇
  1981年   7篇
  1980年   35篇
  1979年   6篇
  1978年   6篇
  1975年   6篇
  1974年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
12.
The site preferences of co-alloying elements (Mo–Ta, Mo–Re, Mo–Cr) in Ni3Al are studied using first-principles calculations, and the effects of these alloying elements on the elastic properties of Ni3Al are evaluated by elastic property calculations. The results show that the Mo–Ta, Mo–Re and Mo–Cr atom pairs all prefer Al–Al sites and the spatial neighbor relation of substitution sites almost has no influence on the site preference results. Furthermore, the Young's modulus of Ni3Al increases much higher by substituting Al–Al sites with co-alloying atoms, among which Mo–Re has the best strengthening effect. The enhanced chemical bondings between alloying atoms and their neighbor host atoms are considered to be the main strengthening mechanism of the alloying elements in Ni3Al.  相似文献   
13.
The Er3+ doped oxyfluorogermanate glasses, with a composition containing Na element, were synthesized by the conventional melting–quenching technique. When Na element was introduced into the composition of oxyfluorogermanate glass, the crystals behavior was investigated in details. Depending on the annealing procedure supplied, thermal annealing of precursor glasses in the system GeO2/BaF2/AlF3/Na2O/NaF/ZnO/GdF3/ErF3 led to the precipitation of different crystal phase nanocrystals. It was confirmed the nanocrystals in GC600 is orthorhombic NaBaAlF6 which led to enhance obviously in the UC luminescence of Er3+. However, the nanocrystals in G585 led to decrease in the UC luminescence, which indicated few Er ions enter into the lattice of this nanocrystal phase. The reason of the decrease in UC emission intensity of GC585 was analyzed.  相似文献   
14.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   
15.
In this study, two dimensional (2D) and quasi three-dimensional (quasi-3D) shear deformation theories are presented for static and free vibration analysis of single-layer functionally graded (FG) plates using a new hyperbolic shape function. The material of the plate is inhomogeneous and the material properties assumed to vary continuously in the thickness direction by three different distributions; power-law, exponential and Mori–Tanaka model, in terms of the volume fractions of the constituents. The fundamental governing equations which take into account the effects of both transverse shear and normal stresses are derived through the Hamilton's principle. The closed form solutions are obtained by using Navier technique and then fundamental frequencies are found by solving the results of eigenvalue problems. In-plane stress components have been obtained by the constitutive equations of composite plates. The transverse stress components have been obtained by integrating the three-dimensional stress equilibrium equations in the thickness direction of the plate. The accuracy of the present method is demonstrated by comparisons with the different 2D, 3D and quasi-3D solutions available in the literature.  相似文献   
16.
This paper addresses the nonlinear stress-strain response in glass fibre non-crimp fabric reinforced vinylester composite laminates subjected to in-plane tensile loading. The nonlinearity is shown to be a combination of brittle and plastic failure. It is argued that the shift from plastic to brittle behaviour in the vinylester is caused by the state of stress triaxiality caused by the interaction between fibre and vinylester. A model combining damage and plasticity is calibrated and evaluated using data from extensive experimental testing. The onset of damage is predicted using the Puck failure criterion, and the evolution of damage is calibrated from the observed softening in plies loaded in transverse tension. Shear loading beyond linear elastic response is observed to result in irreversible strains. A yield criterion is implemented for shear deformation. A strain hardening law is fitted to the stress-strain response observed in shear loaded plies. Experimental results from a selection of laminates with different layups are used to verify the numerical models. A complete set of model parameters for predicting elastic behaviour, strength and post failure softening is presented for glass fibre non-crimped fabric reinforced vinylester. The predicted behaviour from using these model parameters are shown to be in good agreement with experimental results.  相似文献   
17.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
18.
The electromagnetic shielding effectiveness of kenaf fiber based composites with different iron oxide impregnation levels was investigated. The kenaf fibers were retted for removing the lignin and extractives from the fibers and magnetized. Using the unsaturated polyester and the magnetized fibers, kenaf fiber based composites were manufactured by the compression molding process. The transmission energies of the composites were characterized when the composite samples were exposed under the irradiation of electromagnetic (EM) wave with a variable frequency from 9 GHz to 11 GHz. Using the Scanning Electron Microscope (SEM), the iron oxide nanoparticles were observed on the surfaces and inside the micropore structures of single fibers. As the Fe content increased from 0% to 6.8%, 15.9% and 18.0%, the total surface free energy of kenaf fibers with the magnetizing treatments increased from 44.8 mJ/m2 to 46.1 mJ/m2, 48.8 mJ/m2 and 53.0 mJ/m2, respectively, while the modulus of elasticity reduced from 2875 MPa to 2729 MPa, 2487 MPa and 2007 MPa, respectively. Meanwhile, the shielding effectiveness was increased from 30–50% to 60–70%, 65–75% and 70–80%, respectively.  相似文献   
19.
20.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号