首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16115篇
  免费   985篇
  国内免费   1052篇
电工技术   171篇
综合类   660篇
化学工业   3496篇
金属工艺   2049篇
机械仪表   1096篇
建筑科学   152篇
矿业工程   150篇
能源动力   441篇
轻工业   393篇
水利工程   47篇
石油天然气   218篇
武器工业   76篇
无线电   1941篇
一般工业技术   5172篇
冶金工业   791篇
原子能技术   947篇
自动化技术   352篇
  2024年   21篇
  2023年   236篇
  2022年   330篇
  2021年   433篇
  2020年   436篇
  2019年   332篇
  2018年   321篇
  2017年   489篇
  2016年   404篇
  2015年   384篇
  2014年   678篇
  2013年   1044篇
  2012年   871篇
  2011年   1499篇
  2010年   1026篇
  2009年   1182篇
  2008年   1030篇
  2007年   976篇
  2006年   744篇
  2005年   726篇
  2004年   719篇
  2003年   678篇
  2002年   558篇
  2001年   315篇
  2000年   298篇
  1999年   293篇
  1998年   255篇
  1997年   221篇
  1996年   206篇
  1995年   193篇
  1994年   187篇
  1993年   163篇
  1992年   146篇
  1991年   144篇
  1990年   127篇
  1989年   88篇
  1988年   59篇
  1987年   54篇
  1986年   48篇
  1985年   51篇
  1984年   60篇
  1983年   34篇
  1982年   41篇
  1981年   17篇
  1980年   12篇
  1979年   5篇
  1977年   3篇
  1975年   3篇
  1973年   2篇
  1959年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
SiCf/PyC/SiC and SiCf/BN/SiC mini-composites comprising single tow SiC fibre-reinforced SiC with chemical vapor deposited PyC or BN interface layers are fabricated. The microstructure evolutions of the mini-composite samples as the oxidation temperature increases (oxidation at 1000, 1200, 1400, and 1600?°C in air for 2?h) are observed by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction characterization methods. The damage evolution for each component of the as-fabricated SiCf/SiC composites (SiC fibre, PyC/BN interface, SiC matrix, and mesophase) is mapped as a three-dimensional (3D) image and quantified with X-ray computed tomography. The mechanical performance of the composites is investigated via tensile tests.The results reveal that tensile failure occurs after the delamination and fibre pull-out in the SiCf/PyC/SiC composites due to the volatilization of the PyC interface at high temperatures in the air environment. Meanwhile, the gaps between the fibres and matrix lead to rapid oxidation and crack propagation from the SiC matrix to SiC fibre, resulting in the failure of the SiCf/PyC/SiC composites as the oxidation temperature increases to 1600?°C. On the other hand, the oxidation products of B2O3 molten compounds (reacted from the BN interface) fill up the fracture, cracks, and voids in the SiC matrix, providing excellent strength retention at elevated oxidation temperatures. Moreover, under the protection of B2O3, the SiCf/BN/SiC mini-composites show a nearly intact microstructure of the SiC fibre, a low void growth rate from the matrix to fibre, and inhibition of new void formation and the SiO2 grain growth from room to high temperatures. This work provides guidance for predicting the service life of SiCf/PyC/SiC and SiCf/BN/SiC composite materials, and is fundamental for establishing multiscale damage models on a local scale.  相似文献   
22.
The lead-free piezoelectric ceramics (Na.47Bi.47Ba.06)1-xCaxTiO3 (x?=?0, 0.01, 0.02, 0.03, 0.05, and 0.08, abbreviated as BNBTC/0, BNBTC/1, BNBTC/2, BNBTC/3, BNBTC/5, and BNBTC/8, respectively) were obtained using the solid-state reaction method. The structure, electric conductivity, and dielectric, ferroelectric, and piezoelectric properties of the Ca2+-doped (Na.47Bi.47Ba.06)TiO3 ceramics were thoroughly investigated. The ceramics sintered at 1200?°C exhibit dense microstructures, having relative densities higher than 96%. The X-ray diffraction results demonstrate that all ceramics have a pure perovskite structure. The mean grain sizes of the ceramics are related to the Ca2+ quantity. A small quantity of Ca2+ ions (x?≤?0.03) improves the piezoelectric and ferroelectric properties of the samples. The dielectric behavior of the samples is sensitive to the Ca2+ content and electric poling. The results demonstrate that the electrical properties of the (Na.47Bi.47Ba.06)TiO3 lead-free ceramics can be well tuned by varying the Ca2+ quantity.  相似文献   
23.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
24.
Cone-beam X-ray luminescence computed tomography (CB-XLCT) is an attractive hybrid imaging modality, and it has the potential of monitoring the metabolic processes of nanophosphors-based drugs in vivo. However, the XLCT imaging suffers from a severe ill-posed problem. In this work, a sparse nonconvex Lp (0?p?L1 regularization. Further, an iteratively reweighted split augmented lagrangian shrinkage algorithm (IRW_SALSA-Lp) was proposed to efficiently solve the non-convex Lp (0?p?p-values (1/16, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8) in both 3D digital mouse experiments and in vivo experiments. The results demonstrate that the proposed non-convex methods outperform L2 and L1 regularization in accurately recovering sparse targets in CB-XLCT. And among all the non-convex p-values, our Lp(1/4?p?相似文献   
25.
Proficiency on underlying mechanism of rubber-metal adhesion has been increased significantly in the last few decades. Researchers have investigated the effect of various ingredients, such as hexamethoxymethyl melamine, resorcinol, cobalt stearate, and silica, on rubber-metal interface. The role of each ingredient on rubber-metal interfacial adhesion is still a subject of scrutiny. In this article, a typical belt skim compound of truck radial tire is selected and the effect of each adhesive ingredient on adhesion strength is explored. Out of these ingredients, the effect of cobalt stearate is found noteworthy. It has improved adhesion strength by 12% (without aging) and by 11% (humid-aged), respectively, over control compound. For detailed understanding of the effect of cobalt stearate on adhesion, scanning electron microscopy and energy dispersive spectroscopy are utilized to ascertain the rubber coverage and distribution of elements. X-ray photoelectron spectroscopy results helped us to understand the impact of CuXS layer depth on rubber-metal adhesion. The depth profile of the CuXS layer was found to be one of the dominant factors of rubber-metal adhesion retention. Thus, this study has made an attempt to find the impact of different adhesive ingredients on the formation of CuXS layer depth at rubber-metal interface and establish a correlation with adhesion strength simultaneously.  相似文献   
26.
27.
X射线光刻掩模背面刻蚀过程中的形变仿真   总被引:1,自引:0,他引:1  
开发了理论模型以验证有限元方法用于X射线光刻掩模刻蚀过程数值仿真的正确性。利用相同的有限元技术,对X射线光刻掩模的背面开窗、Si片刻蚀过程进行数值仿真。结果表明,图形区域的最大平面内形变(IPD)出现在上、下边缘处,最大非平面形变(OPD)出现在左、右边缘处。此外对Si片单载荷步刻蚀和多载荷步刻蚀的仿真进行比较,结果表明图形区域最终的形变量与Si片刻蚀的过程无关。  相似文献   
28.
Lattice structure and rod-like shaped SbSI nanocrystals obtained by ball milling with rod thickness down to 70 nm, as estimated from X-ray diffraction (XRD) and electron microscopy, is similar to that of the bulk crystals. The dependence of the grain size on the milling duration is discussed in view of the chain-like crystalline structure of SbSI. Possible factors, responsible for the observed Raman line broadening, are discussed, scattering by surface phonons being considered the predominant one.  相似文献   
29.
X-ray computed microtomography (XMT) was used to investigate why gels reduce relative permeability to water more than that to oil in strongly water-wet Berea sandstone. XMT allows saturation differences to be monitored for individual pores during various stages of oil, water, and gelant flooding. The method also characterizes distributions of pore size, aspect ratio, and coordination number for the porous media. We studied a Cr(III) acetate–HPAM gel that reduced permeability to water (at Sor) by a factor 80–90 times more than that to oil (at Swr). In Berea, the gel caused disproportionate permeability reduction by trapping substantial volumes of oil that remained immobile during water flooding (i.e., 43.5% Sor before gel placement versus 78.7% Sor after gel placement). With this high trapped oil saturation, water was forced to flow through narrow films, through the smallest pores, and through the gel itself. In contrast, during oil flooding, oil pathways remained relatively free from constriction by the gel.  相似文献   
30.
Chemical Composition and Microstructure of Polymer‐Derived Glasses and Ceramics in the Si–C–O System. Part 2: Characterization of microstructure formation by means of high‐resolution transmission electron microscopy and selected area diffraction Liquid or solid silicone resins represent the economically most interesting class of organic precursors for the pyrolytic production of glass and ceramics materials on silicon basis. As dense, dimensionally stable components can be cost‐effectively achieved by admixing reactive filler powders, chemical composition and microstructure development of the polymer‐derived residues must be exactly known during thermal decomposition. Thus, in the present work, glasses and ceramics produced by pyrolysis of the model precursor polymethylsiloxane at temperatures from 525 to 1550 °C are investigated. In part 1, by means of analytical electron microscopy, the bonding state of silicon was determined on a nanometre scale and the phase separation of the metastable Si–C–O matrix into SiO2, C and SiC was proved. The in‐situ crystallization could be considerably accelerated by adding fine‐grained powder of inert fillers, such as Al2O3 or SiC, which permits effective process control. In part 2, the microstructure is characterized by high‐resolution transmission electron microscopy and selected area diffraction. Turbostratic carbon and cubic β‐SiC precipitate as crystallization products. Theses phases are embedded in an amorphous matrix. Inert fillers reduce the crystallization temperature by several hundred °C. In this case, the polymer‐derived Si–C–O material acts as a binding agent between the powder particles. Reaction layer formation does not occur. On the investigated pyrolysis conditions, no crystallization of SiO2 was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号