首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2879篇
  免费   233篇
  国内免费   119篇
电工技术   13篇
综合类   139篇
化学工业   1238篇
金属工艺   114篇
机械仪表   43篇
建筑科学   322篇
矿业工程   17篇
能源动力   15篇
轻工业   790篇
水利工程   35篇
石油天然气   44篇
武器工业   3篇
无线电   44篇
一般工业技术   211篇
冶金工业   134篇
原子能技术   22篇
自动化技术   47篇
  2024年   16篇
  2023年   88篇
  2022年   301篇
  2021年   288篇
  2020年   125篇
  2019年   103篇
  2018年   92篇
  2017年   89篇
  2016年   104篇
  2015年   102篇
  2014年   148篇
  2013年   169篇
  2012年   154篇
  2011年   180篇
  2010年   132篇
  2009年   124篇
  2008年   79篇
  2007年   123篇
  2006年   109篇
  2005年   124篇
  2004年   93篇
  2003年   56篇
  2002年   58篇
  2001年   33篇
  2000年   33篇
  1999年   33篇
  1998年   31篇
  1997年   22篇
  1996年   21篇
  1995年   26篇
  1994年   13篇
  1993年   13篇
  1992年   12篇
  1991年   13篇
  1990年   15篇
  1989年   11篇
  1988年   6篇
  1987年   20篇
  1986年   6篇
  1985年   21篇
  1984年   19篇
  1983年   8篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1967年   2篇
  1963年   1篇
  1957年   1篇
  1956年   1篇
  1951年   1篇
排序方式: 共有3231条查询结果,搜索用时 15 毫秒
111.
Advanced multiomics analysis has revealed novel pathophysiological mechanisms in kidney disease. In particular, proteomic and metabolomic analysis shed light on mitochondrial dysfunction (mitochondrial stress) by glycation in diabetic or age-related kidney disease. Further, metabolic damage often results from organelle stress, such as mitochondrial stress and endoplasmic reticulum (ER) stress, as well as interorganelle communication, or “organelle crosstalk”, in various kidney cells. These contribute to progression of the disease phenotype. Aberrant tubular mitochondrial lipid metabolism leads to tubular inflammation and fibrosis. This review article summarizes updated evidence regarding organelle stress, organelle crosstalk, and metabolic derangement in kidney disease.  相似文献   
112.
Ammonium is a paradoxical nutrient because it is more metabolically efficient than nitrate, but also causes plant stresses in excess, i.e., ammonium toxicity. Current knowledge indicates that ammonium tolerance is species-specific and related to the ammonium assimilation enzyme activities. However, the mechanisms underlying the ammonium tolerance in bedding plants remain to be elucidated. The study described herein explores the primary traits contributing to the ammonium tolerance in three bedding plants. Three NH4+:NO3 ratios (0:100, 50:50, 100:0) were supplied to salvia, petunia, and ageratum. We determined that they possessed distinct ammonium tolerances: salvia and petunia were, respectively, extremely sensitive and moderately sensitive to high NH4+ concentrations, whereas ageratum was tolerant to NH4+, as characterized by the responses of the shoot and root growth, photosynthetic capacity, and nitrogen (amino acid and soluble protein)-carbohydrate (starch) distributions. An analysis of the major nitrogen assimilation enzymes showed that the root GS (glutamine synthetase) and NADH-GDH (glutamate dehydrogenase) activities in ageratum exhibited a dose-response relationship (reinforced by 25.24% and 6.64%, respectively) as the NH4+ level was raised from 50% to 100%; but both enzyme activities were significantly diminished in salvia. Besides, negligible changes of GS activities monitored in leaves revealed that only the root GS and NADH-GDH underpin the ammonium tolerances of the three bedding plants.  相似文献   
113.
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and progression to chronic kidney disease (CKD). However, no effective therapeutic intervention has been established for ischemic AKI. Endothelial progenitor cells (EPCs) have major roles in the maintenance of vascular integrity and the repair of endothelial damage; they also serve as therapeutic agents in various kidney diseases. Thus, we examined whether EPCs have a renoprotective effect in an IRI mouse model. Mice were assigned to sham, EPC, IRI-only, and EPC-treated IRI groups. EPCs originating from human peripheral blood were cultured. The EPCs were administered 5 min before reperfusion, and all mice were killed 72 h after IRI. Blood urea nitrogen, serum creatinine, and tissue injury were significantly increased in IRI mice; EPCs significantly improved the manifestations of IRI. Apoptotic cell death and oxidative stress were significantly reduced in EPC-treated IRI mice. Administration of EPCs decreased the expression levels of NLRP3, cleaved caspase-1, p-NF-κB, and p-p38. Furthermore, the expression levels of F4/80, ICAM-1, RORγt, and IL-17RA were significantly reduced in EPC-treated IRI mice. Finally, the levels of EMT-associated factors (TGF-β, α-SMA, Snail, and Twist) were significantly reduced in EPC-treated IRI mice. This study shows that inflammasome-mediated inflammation accompanied by immune modulation and fibrosis is a potential target of EPCs as a treatment for IRI-induced AKI and the prevention of progression to CKD.  相似文献   
114.
Opioids are widely used for the pain management of acute pancreatitis (AP), but their impact on disease progression is unclear. Therefore, our aim was to study the effects of clinically relevant opioids on the severity of experimental AP. Various doses of fentanyl, morphine, or buprenorphine were administered as pre- and/or post-treatments in rats. Necrotizing AP was induced by the intraperitoneal injection of L-ornithine-HCl or intra-ductal injection of Na-taurocholate, while intraperitoneal caerulein administration caused edematous AP. Disease severity was determined by laboratory and histological measurements. Mu opioid receptor (MOR) expression and function was assessed in control and AP animals. MOR was expressed in both the pancreas and brain. The pancreatic expression and function of MOR were reduced in AP. Fentanyl post-treatment reduced necrotizing AP severity, whereas pre-treatment exacerbated it. Fentanyl did not affect the outcome of edematous AP. Morphine decreased vacuolization in edematous AP, while buprenorphine pre-treatment increased pancreatic edema during AP. The overall effects of morphine on disease severity were negligible. In conclusion, the type, dosing, administration route, and timing of opioid treatment can influence the effects of opioids on AP severity. Fentanyl post-treatment proved to be beneficial in AP. Clinical studies are needed to determine which opioids are best in AP.  相似文献   
115.
Teriflunomide (TFN) limits relapses in relapsing–remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria.  相似文献   
116.
刘芬  丰平仲  朱顺妮  王博  王忠铭 《化工进展》2020,39(11):4668-4676
探究煤化工烟道气中毒性成分对微藻的影响是利用微藻固定煤化工烟道气CO2实现减排的关键。本文利用不同浓度的NaHS、Na2SO3和NH3·H2O培养Chlorella pyrenoidosaC. pyrenoidosa),以探究煤化工烟道气主要毒性成分H2S、SO2和NH3气体水溶物的毒性。实验结果表明:NaHS、Na2SO3和NH3·H2O浓度分别低于1mmol/(L·d)、40mmol/(L·d)和7mmol/(L·d)时对C. pyrenoidosa生长无抑制作用,而且Na2SO3[<40mmol/(L·d)]会显著促进 C. pyrenoidosa的生长;NaHS 添加4mmol/(L·d)时会在生长初期抑制C. pyrenoidosa的生长,NH3·H2O添加35mmol/(L·d)则会直接造成藻细胞的破碎死亡。与对照组相比,NaHS和Na2SO3浓度分别低于1mmol/(L·d)、10mmol/(L·d)时对C. pyrenoidosa的细胞成分无影响;NaHS添加4mmol/(L·d)使藻蛋白含量提高7.13%;Na2SO3添加40mmol/(L·d)使藻蛋白降低13.45%,总糖含量提高42.90%;NH3·H2O的添加会使藻蛋白含量降低,总糖含量提高。微藻生物质整体蛋白质含量较高,可作为蛋白饲料来源。研究结果表明,C. pyrenoidosa对煤化工烟道气中的主要毒性气体有较好的耐受性,利用煤化工烟道气培养微藻具有可行性。  相似文献   
117.
吴文能  吉宁  雷霁卿  何军  张卜艳  王加忠  王瑞 《农药》2020,59(2):135-139
[目的]确定引起贵州水晶葡萄采后贮藏病害的病原真菌种类及室内筛选用于该病害的主要防治杀菌剂。[方法]对病原菌进行分离纯化鉴定,通过科赫法则确定致病菌种类;筛选12种商品杀菌剂对炭疽病菌进行抑菌活性测定,筛选出有效药剂,为防治该病害提供一定的理论依据。[结果]从贵州省凯里市水晶葡萄采后贮藏病害分离鉴定出3株病原菌,为青霉菌(Penicillium sp.)、炭疽病菌(Clletotrichum gloeosporioides)和链格孢菌(Alternaria sp.),采用科赫法则,对3株病原真菌进行刺伤回接,发现3株均为水晶葡萄在贮藏过程中的主要致病菌。12种杀菌剂对水晶葡萄炭疽病菌进行室内抑菌活性测试结果表明:均具有较好的抑制活性,其中50%咯菌腈WP、50%苯菌灵WP、42%噻菌灵SC和43%戊唑醇SC对水晶葡萄炭疽病菌抑制活性最好,其EC50值分别为0.1024、0.1386、0.1624、0.1974 mg/L。[结论]凯里水晶葡萄采后病害病菌为青霉菌、炭疽病菌和链格孢菌;筛选出12种药剂针对水晶葡萄采后病害炭疽病菌的药剂,其中50%咯菌腈WP对炭疽病菌具有较好抑制效果,为水晶葡萄采后贮藏病害防治提供理论基础。  相似文献   
118.
Introduction: A recent study showed that early renal tubular injury is ameliorated in Nod-like receptor pyrin domain-containing protein 3 (NLRP3) KO mice with rhabdomyolysis-induced acute kidney injury (RIAKI). However, the precise mechanism has not been determined. Therefore, we investigated the role of NLRP3 in renal tubular cells in RIAKI. Methods: Glycerol-mediated RIAKI was induced in NLRP3 KO and wild-type (WT) mice. The mice were euthanized 24 h after glycerol injection, and both kidneys and plasma were collected. HKC-8 cells were treated with ferrous myoglobin to mimic a rhabdomyolytic environment. Results: Glycerol injection led to increase serum creatinine, aspartate aminotransferase (AST), and renal kidney injury molecule-1 (KIM-1) level; renal tubular necrosis; and apoptosis. Renal injury was attenuated in NLRP3 KO mice, while muscle damage and renal neutrophil recruitment did not differ between NLRP3 KO mice and WT mice. Following glycerin injection, increases in cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), and a decrease in the glutathione peroxidase 4 (GPX-4) level were observed in the kidneys of mice with RIAKI, and these changes were alleviated in the kidneys of NLRP3 KO mice. NLRP3 was upregulated, and cell viability was suppressed in HKC-8 cells treated with ferrous myoglobin. Myoglobin-induced apoptosis and lipid peroxidation were significantly decreased in siNLRP3-treated HKC-8 cells compared to ferrous myoglobin-treated HKC-8 cells. Myoglobin reduced the mitochondrial membrane potential and increased mitochondrial fission and reactive oxygen species (ROS) and lipid peroxidation levels, which were restored to normal levels in NLRP3-depleted HKC-8 cells. Conclusions: NLRP3 depletion ameliorated renal tubular injury in a murine glycerol-induced acute kidney injury (AKI) model. A lack of NLRP3 improved tubular cell viability via attenuation of myoglobin-induced mitochondrial injury and lipid peroxidation, which might be the critical factor in protecting the kidney.  相似文献   
119.
Gui-A-Gra, a commercial insect powder from Gryllus bimaculatus, is registered as an edible insect by the Korean food and drug administration. The aim of this study was to investigate the effect of Gui-A-Gra on testicular damage induced by experimental left varicocele in male Sprague Dawley rats. A total of 72 rats were randomly divided into the following six groups (12 rats in each group): a normal control group (CTR), a group administrated with Gui-A-Gra 1.63 gm/kg (G1.63), a group administrated with Gui-A-Gra 6.5 gm/kg (G6.5), a varicocele (VC)-induced control group (VC), a VC-induced group administrated with Gui-A-Gra 1.63 gm/kg (VC + G1.63), and a VC-induced group administrated with Gui-A-Gra 6.5 gm/kg (VC + G6.5). Rats were administrated 1.63 or 6.5 gm/kg Gui-A-Gra once daily for 42 days. Indicators of sperm parameters, histopathology, reproductive hormones, oxidative stress, endoplasmic reticulum (ER) stress, inflammation, and mitochondrial apoptosis were analyzed to evaluate effects of Gui-A-Gra on VC-induced testicular dysfunction. Gui-A-Gra administration to VC-induced rats significantly (p < 0.05) increased sperm count and sperm motility, Johnsen score, spermatogenic cell density, serum testosterone, testicular superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, GPx4, and steroidogenic acute regulatory protein (StAR) level. Moreover, pretreatment with Gui-A-Gra significantly (p < 0.05) decreased terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) positive cells/tubules, serum luteinizing hormone (LH), serum follicle-stimulating hormone (FSH), testicular tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), reactive oxygen species (ROS)/reactive nitrogen species (RNS) level, glucose-regulated protein-78 (Grp-78), phosphorylated c-Jun-N-terminal kinase (p-JNK), phosphorylated inositol-requiring transmembrane kinase/endoribonuclease 1α (p-IRE1α), cleaved caspase-3, and BCL2 associated X protein: B-cell lymphoma 2 (Bax: Bcl2) ratio in VC rats. These results suggest that protective effects of Gui-A-Gra on VC-induced testicular injury might be due to its antioxidant, anti-inflammatory, and androgenic activities that might be mediated via crosstalk of oxidative stress, ER stress, and mitochondrial apoptosis pathway.  相似文献   
120.
The three GxxxG repeating motifs from the C-terminal region of β-amyloid (Aβ) peptide play a significant role in regulating the aggregation kinetics of the peptide. Mutation of these glycine residues to leucine greatly accelerates the fibrillation process but generates a varied toxicity profile. Using an array of biophysical techniques, we demonstrated the uniqueness of the composite glycine residues in these structural repeats. We used solvent relaxation NMR spectroscopy to investigate the role played by the surrounding water molecules in determining the corresponding aggregation pathway. Notably, the conformational changes induced by Gly33 and Gly37 mutations result in significantly decreased toxicity in a neuronal cell line. Our results indicate that G33xxxG37 is the primary motif responsible for Aβ neurotoxicity, hence providing a direct structure–function correlation. Targeting this motif, therefore, can be a promising strategy to prevent neuronal cell death associated with Alzheimer's and other related diseases, such as type II diabetes and Parkinson's.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号