首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38642篇
  免费   3642篇
  国内免费   1902篇
电工技术   2979篇
综合类   2626篇
化学工业   9419篇
金属工艺   6751篇
机械仪表   1506篇
建筑科学   3759篇
矿业工程   1160篇
能源动力   1318篇
轻工业   2971篇
水利工程   822篇
石油天然气   1356篇
武器工业   268篇
无线电   2133篇
一般工业技术   4289篇
冶金工业   1845篇
原子能技术   258篇
自动化技术   726篇
  2024年   191篇
  2023年   762篇
  2022年   1431篇
  2021年   1704篇
  2020年   1431篇
  2019年   1165篇
  2018年   1107篇
  2017年   1545篇
  2016年   1449篇
  2015年   1485篇
  2014年   2068篇
  2013年   2156篇
  2012年   2624篇
  2011年   2900篇
  2010年   1992篇
  2009年   2309篇
  2008年   1857篇
  2007年   2236篇
  2006年   2237篇
  2005年   1869篇
  2004年   1559篇
  2003年   1356篇
  2002年   1116篇
  2001年   985篇
  2000年   822篇
  1999年   738篇
  1998年   590篇
  1997年   500篇
  1996年   376篇
  1995年   375篇
  1994年   301篇
  1993年   208篇
  1992年   173篇
  1991年   137篇
  1990年   105篇
  1989年   85篇
  1988年   54篇
  1987年   44篇
  1986年   24篇
  1985年   16篇
  1984年   18篇
  1983年   11篇
  1982年   16篇
  1981年   7篇
  1980年   12篇
  1979年   5篇
  1976年   3篇
  1960年   3篇
  1959年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
31.
32.
The microstructure and the oxidation resistance in air of continuous carbon fibre reinforced ZrB2–SiC ceramic composites were investigated. SiC content was varied between 5–20?vol.%, while maintaining fibre content at ~40?vol.%. Short term oxidation tests in air were carried out at 1500 and 1650?°C in a bottom-up loading furnace. The thickness, composition and microstructure of the resulting oxide scale were analysed by SEM-EDS and X-Ray diffraction. The results show that contents above 15?vol.% SiC ensure the formation of a homogeneous protective borosilicate glass that covers the entire sample and minimizes fibre burnout. The scale thickness is ~90?μm for the sample containing 5?vol.% SiC and decreases with increasing SiC content.  相似文献   
33.
34.
ABSTRACT

Improving the hydration resistance of CaO particle in manufacturing and application of free CaO-containing materials has practical significance. In this study, CaO granules was made from Ca(OH)2 particles, which were fabricated by the granulation method. The results showed that the hydration resistance of the CaO granules which was prepared under 1700?r?min?1 was the best, the CaO granules was sintered well in calcination process, the shell of CaO granules was relatively dense, which improves the hydration resistance of CaO granules, and the rate of hydration weight increment was 0.58% after placed in the air for 20 days under a temperature of 10–14°C and a relative humidity of 57–81%.  相似文献   
35.
Clay polyurethane nanocomposite (CPN) coating films were fabricated by uniformly dispersing nanoclay, organically modified with 25–30 wt.% octadecylamine in varying concentrations up to 5 wt.%, in a commercial two component, glossy, acrylic aliphatic polyurethane using ultrasonication. Organo-modified nanoclay was characterized by X-ray diffraction (XRD). The dispersion of the nanoclay into the matrix was investigated by scanning electron microscopy (SEM). CPN coating films were characterized by thermogravimetric analysis (TGA), and flame retardant, corrosion resistance and mechanical properties were also investigated. The XRD measurement indicated that, the organo-modified nanoclay particles were mainly constituted of montmorillonite with traces of quartz and calcite also found to be present. The SEM analysis showed that the nanoclay layers were dispersed and intercalated into the polyurethane coating. Thermogravimetric analysis showed that incorporating 5 wt.% organo-nanoclay into polyurethane considerably enhanced the thermal stability and increased the char residue to 14.11 wt.% relative to 4.58 for the sample without organo-nanoclay (blank polyurethane). The limiting oxygen index (LOI) test revealed that incorporation of organo-nanoclay led to a further increase in LOI values, which indicate an improvement in flame retardancy properties. The corrosion resistance also improved and this improvement increases with increase nanoclay wt.%. The mechanical resistance measurements demonstrated that the gloss of the CPN coating films slightly decreased, although hardness, adhesion and impact resistance of the CPN coating films improved with the incorporation of the organo-nanoclay.  相似文献   
36.
37.
《Ceramics International》2020,46(15):24204-24212
The effects of in-situ synthesis columnar mullite and pore structure on the hot modulus of rupture (HMOR), thermal shock resistance and corrosion resistance of corundum castables have been investigated in this paper. When 2% nano silica was added, the pore diameters of castables could be decreased to 15 nm (at 110 °C), 1 μm (1100 °C) and 6 μm (1500 °C), respectively. The corresponding reducing magnitude of pore size is 98.5%, 83.3% and 33.3%. The HMOR of castables fired at 1500 °C increased by 110% to 3.64 MPa. Furthermore, after three thermal shock cycles, the residual strength ratio of castables increased from 5.2% to 15.3%. A large amount of cross-distributed columnar mullite was formed between nano silica and α-Al2O3 by the two-dimensional nucleation mechanism, which remarkably enhanced the high temperature properties. The penetration index reduced from 30.86% to 19.88%, suggesting that smaller pore size and higher viscosity had a great influence to the penetration process.  相似文献   
38.
39.
Al–Cr slag is the solid waste generated by the smelting of Cr metal. It presents a range of environmental hazards. This study addressed the corrosion resistance of Al–Cr slag containing chromium–corundum refractories to slags with different basicity. Herein, we provide suggestions for the use of Cr–corundum of different basicity in kilns. Al–Cr slag, brown fused Al2O3, and chrome green were used as the raw materials, with pure calcium aluminate cement being used as a binder. The brick samples, prepared using different blends of chrome green and corundum, were fired at 1600?°C, and subsequently subjected to a slag corrosion test. After corrosion by slag of different basicity, the phase composition and microstructure of the sample were analyzed by X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy. There were two major findings. First, Cr–corundum brick made from Al–Cr slag has a better slag corrosion resistance than that made from Cr2O3 and brown fused Al2O3. Second, Cr–corundum brick made from Al–Cr slag has superior corrosion resistance to slag with a CaO:SiO2 ratio of 2:1.  相似文献   
40.
Although Mg alloy attracts great attention for engineering applications because of high specific strength and low density, low corrosion resistance limits its extensive use. In this study, Mg–Al–Zn–Mn alloy was treated via a laser cladding process to generate a dense and compact laser cladding layer with solid metallurgical bonding on the substrate for improving corrosion resistance, effectively hindering the corrosion pervasion into Mg alloy. The corrosion current density declined from 103 μA/cm2 for Mg alloy to 13 μA/cm2 for the laser cladding layer in NaCl aqueous solution. Moreover, the laser cladding layer was slightly corroded in comparison with Mg alloy in NaCl aqueous solution. Besides, the microhardness of the cladding layer reached a mean value of 170.5 HV, 3.1 times of Mg alloy (56.8 HV) due to the in situ formation of hardening intermetallic phases. Wear resistance of laser cladding layer was also obviously improved. These results demonstrated that the laser cladding layer obviously enhanced anticorrosion property of Mg alloy for engineering applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号