首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5855篇
  免费   961篇
  国内免费   169篇
电工技术   175篇
综合类   201篇
化学工业   2438篇
金属工艺   224篇
机械仪表   176篇
建筑科学   122篇
矿业工程   80篇
能源动力   138篇
轻工业   242篇
水利工程   20篇
石油天然气   35篇
武器工业   9篇
无线电   730篇
一般工业技术   854篇
冶金工业   202篇
原子能技术   34篇
自动化技术   1305篇
  2024年   24篇
  2023年   161篇
  2022年   147篇
  2021年   434篇
  2020年   326篇
  2019年   247篇
  2018年   332篇
  2017年   279篇
  2016年   317篇
  2015年   335篇
  2014年   504篇
  2013年   407篇
  2012年   282篇
  2011年   429篇
  2010年   297篇
  2009年   302篇
  2008年   247篇
  2007年   262篇
  2006年   242篇
  2005年   187篇
  2004年   165篇
  2003年   153篇
  2002年   128篇
  2001年   102篇
  2000年   88篇
  1999年   70篇
  1998年   72篇
  1997年   67篇
  1996年   43篇
  1995年   25篇
  1994年   48篇
  1993年   37篇
  1992年   32篇
  1991年   22篇
  1990年   15篇
  1989年   17篇
  1988年   18篇
  1987年   8篇
  1986年   9篇
  1985年   11篇
  1984年   26篇
  1983年   13篇
  1982年   9篇
  1981年   8篇
  1980年   6篇
  1979年   11篇
  1978年   6篇
  1977年   7篇
  1976年   2篇
  1957年   1篇
排序方式: 共有6985条查询结果,搜索用时 156 毫秒
101.
The rising demand for faster and more efficient electronic devices forces electronics industry to shift toward terahertz frequencies. Therefore there is a growing need for efficient, lightweight, and easy to produce absorbing materials in the terahertz range for electromagnetic interference (EMI) shielding and related applications. This study presents a study on basic optical properties of two types polymer-based composites loaded with two-dimensional structures—graphene and MXene phases (Ti2C). In said range, total EMI shielding efficiency (SE) and its components, the absorption coefficient (α ), refractive index, and complex dielectric function are investigated. The ratio of SE absorption component to reflection component (SEABS :SER ) of fabricated composites is equal or higher than 30:1 in over 80% of studied range. The fabricated composites exhibit low (<0.1) loss tangent in studied range. The addition of 1 wt% of graphene increases the composite α over 10-fold in respect to pure polymer–up to 60 cm−1 for frequency higher than 2 THz.  相似文献   
102.
Although many efforts have been made to regenerate the bone lesions, existing challenges can be mitigated through the development of tissue engineering scaffolds. However, the weak control on the microstructure of constructs, limitation in preparation of patient-specific and multilayered scaffolds, restriction in the fabrication of cell-laden matrixes, and challenges in preserving the drug/growth factors' efficacy in conventional methods have led to the development of bioprinting technology for regeneration of bone defects. So in this review, conventional 3D printers are classified, then the priority of the different types of bioprinting technologies for the preparation of the cell/growth factor-laden matrixes are focused. Besides, the bio-ink compositions, including polymeric/hybrid hydrogels and cell-based bio-inks are classified according to fundamental and recent studies. Herein, different effective parameters, such as viscosity, rheological properties, cross-linking methods, biodegradation biocompatibility, are considered. Finally, different types of cells and growth factors that can encapsulate in the bio-inks to promote bone repair are discussed, and both in vitro and in vivo achievement are considered. This review provides current and future perspectives of cell-laden bioprinting technologies. The restrictions and challenges are identified, and proper strategies for the development of cell-laden matrixes and high-performance printable bio-inks are proposed.  相似文献   
103.
In this study, a series of thermoresponsive cross-linked copolymer poly [N-isopropylacrylamide(NIPAm)-co-N-isopropylmethacrylamide(NIPMAm)] (P-M series samples: P-M-0, 10, 20, 30, 40, where numbers are co-monomer contents) hydrogels were prepared by free radical polymerization using the main monomer N-isopropylacrylamide (NIPAm), co-monomer N-isopropylmethacrylamide (NIPMAm), cross-linking agent N, N-methylenebisacrylamide, initiator (ammonium persulfate)/catalyst, and solvent water. In addition, a series of samples [P-G series samples: P-G-0, 10, 20, 30, 40, where numbers are co-solvent glycerol content) were prepared using P-M-40 as components and water/co-solvent glycerol as a mixed solvent. The effects of co-monomer NIPMAm and co-solvent glycerol contents on the lower critical solution temperature (LCST)/freezing temperature and light transmittance as function of temperature of the prepared copolymer gels were investigated. The resulting thermoresponsive polymer gels had LCSTs in the range of 17.9 to 38.7°C and freezing points in the range of 6.3 to −38.5°C. These gels are suitable materials for smart windows that are responsive to various environmental conditions.  相似文献   
104.
In this work, semiinterpenetrating polymer network (semi-IPN), consisting of sulfonated poly (arylene ether sulfone) (SPAES) and crosslinked vinyl imidazole grafted polysulfone (VMPSU), is prepared and characterized. FTIR, EDS, and solubility test indicate the successful preparation of amphoteric membranes. The semi-IPN amphoteric membranes exhibit better stability than pure SPAES membrane, as demonstrated by thermogravimetric analysis and ex situ immersion testing results. More importantly, it is shown that the amphoteric membrane can effectively hinder vanadium ion crossover through the membrane, which is attributed to the semi-IPN structure and Donnan exclusion. As expected, the amphoteric membrane containing 20% VMPSU exhibits the highest proton selectivity (6.86 × 104 S min cm−3), comparing to pristine SPAES (1.90 × 104 S min cm−3) as well as Nafion117 (1.31 × 104 S min cm−3).  相似文献   
105.
The environmental sustainability, mechanical durability, and thermal stability of the poly(ethylene terephthalate) (PET)-based nanocomposite films compared with pure PET were evaluated. The samples were obtained by incorporating 2 wt% of TiO2, SiO2, ZnO nanoparticles (NPs), and an equal mixture of NPs in polymer by melt-mixing in a twin-screw extruder. The mechanical properties and hardness of samples were determined by the tensile and the atomic force microscopy-based nanoindentation tests. The melting, crystallization, and glass transition temperatures of samples were studied by dynamic mechanical thermal analysis and differential scanning calorimetry. The effects of compatibility, dispersity, and hydrophobicity of NPs on the surface morphology, crystallinity, and thermomechanical properties of nanocomposites were studied. The interaction of SiO2 NPs with PET chains had a promising effect on the surface morphology, high elastic modulus, dispersibility, crystallinity, and thermostability of the sample. The mixing of ZnO and TiO2 NPs improved the UV-blocking effects, and photostability, while the SiO2 and TiO2 NPs maintained the thermal properties of the film against UV radiation. The resulting film could be a good candidate as a greenhouse covering material due to its suitable photosynthetically active radiation transmittance.  相似文献   
106.
Two kinds of bio-based polyurethane coatings for controlled-release urea were prepared by in-situ polymerization used castor oil and liquefied starch as raw materials, respectively. Scanning electron microscopy (SEM) showed that the section morphology of castor oil based polyurethane (Castor-PU) coating was uniform and dense, and that of liquefied starch based polyurethane (Starch-PU) coating had certain proportion of microporous. Infrared spectroscopy (IR) showed that the two coatings had typical urethane characteristic structure, but the difference was that the Starch-PU had obvious unreacted isocyanate structure. Differential scanning calorimetry (DSC) showed that the glass transition temperature of the two coatings was around 58°C, but the Castor-PU had a crystallization domain with obvious crystallization melting peak at 130°C. Thermogravimetric analysis (TG) showed that the thermal stability of Castor-PU was significantly higher than that of Starch-PU. The controlled-release property test showed that when the coating ratio was 2.8%, the nutrient release longevity of urea coated with Castor-PU was 49 days and that of urea coated with Starch-PU was 14 days. The reasons for the poor controlled-release performance of Starch-PU were analyzed, which probably caused by concentrated sulfuric acid and hydrophilic dispersant added in the liquefied starch.  相似文献   
107.
Cavity pressure is one of the best indicators of injection molding conditions and thus has been used for quality prediction in the injection molding process. Also, the repeatability of the cavity pressure profile at each shot indicates the consistency of the part quality, which is easily affected by environmental changes, such as barrel temperature. To maintain quality consistency (such as part weight and geometrical dimensions) during mass production, this study proposed a novel method of the holding pressure adjustment to control the deviation in the cavity pressure distribution during each shot. Injection molding of a thin-walled dumbbell-shaped sample was performed to verify the proposed process, which proved the feasibility of this method for suppressing the influence of the barrel temperature changes on part quality.  相似文献   
108.
In this work, the transport properties of gaseous penetrant through several dense glassy polymeric membranes are studied. The nonequilibrium lattice fluid (NELF) in conjunction with the modified Fick's law and dual mode sorption model was used to simulate the gas transport in glassy polymeric membranes. The approach is based on the sorption, diffusion, in which solubility is calculated based on the NELF model, and diffusion coefficient is obtained from the product thermodynamic coefficient and molecular mobility. The governing equation is solved by the finite element method using COMSOL multi-physics software. The developed model for gas permeability of glassy polymeric membrane can be applied in a wide range of pressure and temperature. The comparison of the calculated permeability and solubility of gasses with the experimental data represented the ability of the developed model. Increasing feed gas temperature increases the gas permeability, while this variation leads to lower gas solubility in the glassy polymeric membranes. The effect of feed temperature and pressure on permeability and solubility is investigated, and the experimental data from literature are described by the developed model. A good prediction of the experimental data can be observed over the considered condition.  相似文献   
109.
Gelatin (Gel)-based pH- and thermal-responsive magnetic hydrogels (MH-1 and MH-2) were designed and developed as novel drug delivery systems (DDSs) for cancer chemo/hyperthermia therapy. For this goal, Gel was functionalized with methacrylic anhydride (GelMA), and then copolymerized with (2-dimethylaminoethyl) methacrylate (DMAEMA) monomer in the presence of methacrylate-end capped magnetic nanoparticles (MNPs) as well as triethylene glycol dimethacrylate (TEGDMA; as crosslinker). Afterward, a thiol-end capped poly(N-isopropylacrylamide) (PNIPAAm-SH) was synthesized through an atom transfer radical polymerization technique, and then attached onto the hydrogel through “thiol-ene” click grafting. The preliminary performances of developed MHs for chemo/hyperthermia therapy of human breast cancer was investigated through the loading of doxorubicin hydrochloride (Dox) as an anticancer agent followed by cytotoxicity measurement of drug-loaded DDSs using MTT assay by both chemo- and chemo/hyperthermia-therapies. Owing to porous morphologies of the fabricated magnetic hydrogels according to scanning electron microscopy images and strong physicochemical interactions (e.g., hydrogen bonding) the drug loading capacities of the MH-1 and MH-2 were obtained as 72 ± 1.4 and 77 ± 1.8, respectively. The DDSs exhibited acceptable pH- and thermal-triggered drug release behaviors. The MTT assay results revealed that the combination of hyperthermia therapy and chemotherapy has synergic effect on the anticancer activities of the developed DDSs.  相似文献   
110.
The present study reports for first time the blending of psyllium husk (PH) powder/gelatin (G) in the polymer-rich composition of polyvinyl alcohol (PVA) to make an electrospinnable solution. The composite was prepared in 3 different ratios viz., 100% (wt/wt) (PVA + PH), 75% + 25% (PVA + 75PH + 25G) (wt/wt) and 50% + 50% (PVA + 50PH + 50G) (wt/wt) in 6% PVA solution. Optimum electrospinning parameters were evaluated for all the prepared blends. The fabricated nanofibers were characterized by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared, differential scanning calorimetry, porosity percentage, and fiber orientation using ImageJ software. A qualitative in vitro degradation study at room temperature is supported by SEM images. The cellular interactions were characterized by MTT assay of NIH-3T3 fibroblast cells for 2 and 4 days with an optimum cell growth of >50% by fourth day of culture and long-term cultivation of L929-RFP cells was observed for 10 days. The nanofibers were formed in the range of 49–600 nm. PVA + 75PH + 25G when cultured with L929-RFP cells exhibited highest fluorescence intensity and thus supported cellular proliferation significantly. Based on the results obtained from various analyses, we anticipate that fabricated psyllium-based nanofiber can be used as a promising candidate for wound healing and other biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号