首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88549篇
  免费   8933篇
  国内免费   3561篇
电工技术   2724篇
技术理论   8篇
综合类   5794篇
化学工业   26718篇
金属工艺   5724篇
机械仪表   2664篇
建筑科学   5787篇
矿业工程   1759篇
能源动力   2812篇
轻工业   11191篇
水利工程   763篇
石油天然气   2702篇
武器工业   592篇
无线电   9904篇
一般工业技术   13983篇
冶金工业   5546篇
原子能技术   549篇
自动化技术   1823篇
  2024年   387篇
  2023年   1577篇
  2022年   2556篇
  2021年   2815篇
  2020年   2885篇
  2019年   2587篇
  2018年   2428篇
  2017年   3050篇
  2016年   3072篇
  2015年   3174篇
  2014年   4695篇
  2013年   5062篇
  2012年   6161篇
  2011年   6419篇
  2010年   4928篇
  2009年   4990篇
  2008年   4238篇
  2007年   5785篇
  2006年   5763篇
  2005年   4982篇
  2004年   4140篇
  2003年   3566篇
  2002年   3051篇
  2001年   2437篇
  2000年   2052篇
  1999年   1642篇
  1998年   1352篇
  1997年   1017篇
  1996年   859篇
  1995年   719篇
  1994年   677篇
  1993年   502篇
  1992年   393篇
  1991年   283篇
  1990年   219篇
  1989年   137篇
  1988年   69篇
  1987年   66篇
  1986年   39篇
  1985年   63篇
  1984年   51篇
  1983年   47篇
  1982年   30篇
  1981年   13篇
  1980年   25篇
  1977年   3篇
  1976年   4篇
  1963年   1篇
  1959年   6篇
  1951年   24篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
21.
Various methods have been developed to monitor the health and strain state of carbon fiber reinforced polymers, each with a unique set of pros and cons. This research assesses the use of piezoresistive sensors for in situ strain measurement of carbon fiber and other composite structures in multidirectional laminates. The piezoresistive sensor material and the embedded circuitry are both evaluated. For the piezoresistive sensor, a conductive nickel nanocomposite sensor is compared with the piezoresistivity of the carbon fiber itself. For the circuit, the use of carbon fibers already present in the structure is compared with the use of nickel coated carbon fiber. Successful localized strain sensing is demonstrated for several sensor and circuitry configurations. Numerous engineering applications are possible in the ever-growing field of carbon-composites.  相似文献   
22.
The goal of the study was to evaluate and compare the physical properties of control, pretreated and densified corn stover, switchgrass, and prairie cord grass samples. Ammonia Fiber Expansion (AFEX) pretreated switchgrass, corn stover, and prairie cord grass samples were densified by using the comPAKco device developed by Federal Machine Company of Fargo, ND. The densified biomass were referred as “PAKs” in this study. All feedstocks were ground into three different grind size of 2, 4 and 8 mm prior to AFEX pretreatment and the impact of grinding on pellet properties was studied. The results showed that the physical properties of AFEX-PAKed material were not influenced by the initial grind size of the feedstocks. The bulk density of the AFEX-PAKed biomass increased by 1.2–6 fold as compared to untreated and AFEX-pretreated materials. The durability of the AFEX-PAKed materials were between 78.25 and 95.2%, indicating that the AFEX-PAKed biomass can be transported easily. To understand the effect of storage on the physical properties of these materials, samples were stored in the ambient condition (20 ± 2 °C and 70 ± 5% relative humidity) for six months. After storage, thermal properties of the biomass did not change but glass transition temperature decreased. The water absorption index and water solubility index of AFEX-treated and AFEX-PAKed biomass showed mixed trends after storage. Moisture content decreased and durability increased upon storage.  相似文献   
23.
In the present study, we report an eco-friendly and simple route to design and synthesize novel nanocomposite catalyst based on platinum nanoparticles anchored on binary support of graphitic carbon nitride (g-C3N4) and cobalt-metal-organic framework (ZIF-67). For this purpose, ZIF-67 was prepared by precipitation method and g-C3N4 was prepared through thermal polymerization method. Later, ZIF-67 and g-C3N4 were hybridized through sonication to get homogeneous g–C3N4–ZIF-67 nanocomposite support material. Platinum nanoparticles (PtNPs) were uniformly deposited on g–C3N4–ZIF-67 by an electrochemical method. The as-developed nanocatalyst was characterized by morphological, structural and electrochemical techniques. The electrocatalytic activity of PtNPs@g–C3N4–ZIF-67 nanocatalyst towards butanol oxidation was evaluated via CV, CA, LSV and EIS in an alkaline medium. Results revealed that the proposed catalyst showed greatly enhanced electrooxidation of butanol in terms of high magnificent current density, lower oxidation potential, excellent long-term stability, large surface area, low charge transfer resistance and less toxic ability. Enhanced catalytic performance of the proposed catalyst could be ascribed to the synergistic effect of g–C3N4–ZIF-67 nanocomposite and PtNPs. The PtNPs@g–C3N4–ZIF-67 catalyst holds promising potential applications to be used as an anodic electrocatalyst for the development of high-performance alkaline fuel cells.  相似文献   
24.
姜学锋  彭飞  张艳龙  薛文辉 《钢铁》2020,55(9):43-48
 为了进一步降低夹杂物缺陷并提高产品质量,基于碳脱氧进行了钢包顶渣改质的研究。冷轧产品的生产工艺为铁水预处理→转炉→RH精炼→连铸,为减少钢中夹杂物质量分数,需要进行钢包顶渣改质,同时降低钢包顶渣TFe质量分数。采用粒碳部分替代铝渣球的方法进行基于碳脱氧工艺的钢包顶渣改质,试验结果表明,顶渣改质效果良好,在顶渣TFe质量分数、中间包钢水游离氧明显降低的同时铸坯中Al2O3夹杂物得到优化;“30 kg粒渣+铝渣球”工艺降低生产成本5.16元/t(钢)。  相似文献   
25.
26.
27.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
28.
Xylo-oligosaccharides (XOS) are known to have beneficial health properties, and are considered to be functional food ingredients. The objective of this study is to compare corn fibers separated from ground corn flour and distillers dried grains with solubles (DDGS) for XOS yield and optimum autohydrolysis conditions. Based on the initial xylan content, the fiber separated from ground corn flour (FC) resulted in higher XOS yield (71.5%) than the fiber separated from DDGS (FD) (54.6%) at the maximum XOS production conditions. XOS produced were mainly xylobiose and xylotriose. Based on total initial material also, FC resulted in higher XOS yield (8.9%) than FD (8.0%), based on total original masses. Thus, fiber separated from ground corn flour would be a better feedstock for production of XOS than fiber separated from DDGS. The conditions for maximum XOS production from FD and FC were 180 °C with 20 min hold-time and 190 °C with 10 min hold-time, respectively.  相似文献   
29.
30.
Microbial fuel cell (MFC) is a promising technology for simultaneous wastewater treatment and energy harvesting. The properties of the anode material play a critical role in the performance of the MFC. In this study, graphene oxide was prepared by a modified hummer's method. A thin layer of graphene oxide was incorporated on the carbon brush using an electrophoretic technique. The deoxygenated graphene oxide formed on the surface of the carbon brush (RGO-CB) was investigated as a bio-anode in MFC operated with real wastewater. The performance of the MFC using the RGO-CB was compared with that using plain carbon brush anode (PCB). Results showed that electrophoretic deposition of graphene oxide on the surface of carbon brush significantly enhanced the performance of the MFC, where the power density increased more than 10 times (from 33 mWm?2 to 381 mWm?2). Although the COD removal was nearly similar for the two MFCs, i.e., with PCB and RGO-CB; the columbic efficiency significantly increased in the case of RGO-CB anode. The improved performance in the case of the modified electrode was related to the role of the graphene in improving the electron transfer from the microorganism to the anode surface, as confirmed from the electrochemical impedance spectroscopy measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号