首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16691篇
  免费   3372篇
  国内免费   636篇
电工技术   98篇
综合类   629篇
化学工业   8295篇
金属工艺   2068篇
机械仪表   518篇
建筑科学   198篇
矿业工程   102篇
能源动力   148篇
轻工业   261篇
水利工程   7篇
石油天然气   26篇
武器工业   120篇
无线电   379篇
一般工业技术   7366篇
冶金工业   368篇
原子能技术   30篇
自动化技术   86篇
  2024年   87篇
  2023年   359篇
  2022年   415篇
  2021年   758篇
  2020年   662篇
  2019年   709篇
  2018年   765篇
  2017年   806篇
  2016年   981篇
  2015年   1276篇
  2014年   1083篇
  2013年   1193篇
  2012年   1049篇
  2011年   1109篇
  2010年   946篇
  2009年   960篇
  2008年   733篇
  2007年   919篇
  2006年   875篇
  2005年   712篇
  2004年   682篇
  2003年   642篇
  2002年   534篇
  2001年   403篇
  2000年   376篇
  1999年   304篇
  1998年   278篇
  1997年   208篇
  1996年   160篇
  1995年   142篇
  1994年   119篇
  1993年   72篇
  1992年   75篇
  1991年   77篇
  1990年   96篇
  1989年   70篇
  1988年   14篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1964年   1篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
The vast chemical and structural tunability of metal–organic frameworks (MOFs) are beginning to be harnessed as functional supports for catalytic nanoparticles spanning a range of applications. However, a lack of straightforward methods for producing nanoparticle-encapsulated MOFs as efficient heterogeneous catalysts limits their usage. Herein, a mixed-metal MOF, NiMg-MOF-74, is utilized as a template to disperse small Ni nanoclusters throughout the parent MOF. By exploiting the difference in Ni O and Mg O coordination bond strength, Ni2+ is selectively reduced to form highly dispersed Ni nanoclusters constrained by the parent MOF pore diameter, while Mg2+ remains coordinated in the framework. By varying the ratio of Ni to Mg in the parent MOF, accessible surface area and crystallinity can be tuned upon thermal treatment, influencing CO2 adsorption capacity and hydrogenation selectivity. The resulting Ni nanoclusters prove to be an active catalyst for CO2 methanation and are examined using extended X-ray absorption fine structure and X-ray photoelectron spectroscopy. By preserving a segment of the Mg2+-containing MOF framework, the composite system retains a portion of its CO2 adsorption capacity while continuing to deliver catalytic activity. The approach is thus critical for designing materials that can bridge the gap between carbon capture and CO2 utilization.  相似文献   
32.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
33.
Vitrified bond CBN grinding wheels are being widely used due to their superior performance. Also, advantages of vitrified grinding wheels are high elastic modulus, stable chemical property, and low thermal expansion coefficient. Brittleness and low strength are key factors restricting the development of vitrified bond CBN grinding wheels. In this paper, the sintering in a high magnetic field was innovatively introduced into the manufacturing of vitrified bond CBN grinding wheels, and the effects of sintering in a high magnetic field on properties on vitrified bond and vitrified CBN composites were systematically investigated. Vitrified bond was characterized using three-point bending, scanning electron microscopy, X-ray diffraction. It was observed that microstructure of vitrified bond could be changed, grain orientation could be controlled and average grain size could be decreased in a high magnetic field, while vitrified bond strength could be simultaneously improved. High quality vitrified bond could be obtained by appropriately adjusting the strength and direction of high magnetic field. Results demonstrated that vitrified bond properties were improved when the magnetic field strength was 6?T. In order to highlight the high magnetic field effect on the vitrified CBN composites, the ordinary CBN abrasives and nickel plated CBN abrasives were used respectively. Microstructures, bending strengths of vitrified CBN composites were compared in different high magnetic fields. When the magnetic field strength was appropriate (less than 6?T), the binding characteristic of vitrified bond CBN composites with nickel plated CBN abrasives was greatly improved. The highest bending strength value of vitrified CBN composites was 79.5?MPa in 6?T high magnetic field.  相似文献   
34.
This study was addressed to the influence of an electric field strength applied at fabrication process and matrix properties, such as the dielectric constant and the Young's modulus, on “pseudo‐1‐3 piezoelectric ceramic/polymer composite” in order to further enhance the piezoelectricity of that. The pseudo‐1‐3 piezoelectric ceramic/polymer composite consists of linearly ordered piezoelectric ceramic particles in polymer material. Silicone gel, silicone rubber, urethane rubber, and poly‐methyl‐methacrylate, which exhibit different dielectric constants and Young's modulus, were used as matrices to evaluate the matrix influence. The piezoelectricity of the pseudo‐1‐3 piezoelectric ceramic/polymer composite was evaluated using the piezoelectric strain constant d33. The d33 is one of the indices of the piezoelectric properties for piezoelectric materials. As a result, it was confirmed that d33 of the pseudo‐1‐3 piezoelectric ceramic/polymer composite increased with the increase of the electric filed strength applied at fabrication process, though, it reached a constant value at a certain strength value. Further it was confirmed that dielectric constant of the matrix had a small influence on d33 of the pseudo‐1‐3 piezoelectric ceramic/polymer composite, however, in case of matrix of lower Young's modulus, d33 was increase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41817.  相似文献   
35.
Sustainable biocomposites have gained considerable interest as an alternative to conventional composites in recent years due to their cost-effectiveness and environmental friendliness. The aim of this study was to investigate the performance and durability behavior of biocomposites from sustainable biocarbon (BC) as compared to conventional established fillers. The poly(butylene terephthalate) (PBT) and its composites reinforced with BC, talc, and glass fiber (GF) were prepared and the durability performances was investigated. The study showed that BC/PBT biocomposites provided a lighter weight alternative to traditionally used fillers. After undergoes thermo-oxidative aging, the mechanical properties of BC/PBT biocomposite were deteriorated. The GF/PBT showed the most stable in retaining its mechanical properties in comparison to the talc/PBT and BC/PBT. The aging behavior and mechanism of the PBT composites were discussed. This study provides further insight on the durability-related properties progression of biocomposites as compared to traditional used fillers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47722.  相似文献   
36.
Static stresses analysis of carbon nano-tube reinforced composite (CNTRC) cylinder made of poly-vinylidene fluoride (PVDF) is investigated in this study. Non-axisymmetric thermo-mechanical loads are applied on cylinder in presence of uniform longitudinal magnetic field and radial electric field. The surrounded elastic medium is modeled by Pasternak foundation because of its advantages to the Winkler type. Distribution of radial, circumferential and effective stresses, temperature field and electric displacements in CNTRC cylinder are determined based on Mori–Tanaka theory. The detailed parametric study is conducted, focusing on the remarkable effects of magnetic field intensity, elastic medium, angle orientation and volume fraction of carbon nano-tubes (CNTs) on distribution of effective stress. Results demonstrated that fatigue life of CNTRC cylinder will be significantly dependent on magnetic intensity, angle orientation and volume fraction of CNTs. Results of this research can be used for optimum design of thick-walled cylinders under multi-physical fields.  相似文献   
37.
A metal matrix composite has been obtained by a novel synthesis route, reacting Al3Ti and graphite at 1000 °C for about 1 min after ball-milling and compaction. The resulting composite is made of an aluminium matrix reinforced by nanometer sized TiC particles (average diameter 70 nm). The average TiC/Al ratio is 34.6 wt.% (22.3 vol.%). The microstructure consists of an intimate mixture of two domains, an unreinforced domain made of the Al solid solution with a low TiC reinforcement content, and a reinforced domain. This composite exhibits uncommon mechanical properties with regard to previous micrometer sized Al–TiC composites and to its high reinforcement volume fraction, with a Young’s modulus of ∼110 GPa, an ultimate tensile strength of about 500 MPa and a maximum elongation of 6%.  相似文献   
38.
The present work deals with the modelling of damage behaviour for sheet moulding compound (SMC) composite materials using a finite element analysis package. Specifically, a comparison is made between the results obtained experimentally for a three-point bending test, and those obtained from numerical simulation using a material model already implemented. The simulation has been performed for the material models available within the PAM-CRASH software. The simulation results are compared and validated with respect to experimentation.  相似文献   
39.
To determine three‐dimensional fiber orientation states in injection‐molded short‐fiber composites, a confocal laser scanning microscope (CLSM) is used. Since the CLSM optically sections the specimen, more than two images of the cross sections on and below the surface of the composite can be obtained. Three‐dimensional fiber orientation states can be determined by using geometric parameters of fiber images obtained from two parallel cross sections. For experiments, carbon‐fiber‐reinforced polystyrene is examined by the CLSM and geometric parameters of fibers on each cross‐sectional plane are measured by an image analysis. In order to describe fiber orientation states compactly, orientation tensors are determined at different positions of the prepared specimen. Three‐dimensional orientation states are obtained without any difficulty by determining the out‐of‐plane angles utilizing fiber images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell–core structure along the thickness of the specimen. Fiber orientation tensors are predicted by a numerical analysis and the numerically predicted orientation states show good agreement with measured ones. However, some differences are found at the end of cavity. They may result from the fountain flow effects, which are not considered in the numerical analysis. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 500–509, 2003  相似文献   
40.
改性双马来酰亚胺的研究   总被引:2,自引:0,他引:2  
本文研究了双马来酰亚胺与烯丙基化合物形成的改性树脂体系的固化和热性能,讨论了单体配比、增韧剂、催化剂对性能的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号