首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   86篇
  国内免费   25篇
电工技术   129篇
综合类   9篇
化学工业   62篇
金属工艺   21篇
机械仪表   6篇
建筑科学   8篇
矿业工程   1篇
能源动力   48篇
轻工业   2篇
水利工程   2篇
无线电   122篇
一般工业技术   245篇
冶金工业   2篇
原子能技术   7篇
自动化技术   12篇
  2024年   2篇
  2023年   37篇
  2022年   7篇
  2021年   25篇
  2020年   37篇
  2019年   20篇
  2018年   24篇
  2017年   30篇
  2016年   22篇
  2015年   18篇
  2014年   34篇
  2013年   40篇
  2012年   46篇
  2011年   37篇
  2010年   26篇
  2009年   39篇
  2008年   24篇
  2007年   27篇
  2006年   25篇
  2005年   20篇
  2004年   17篇
  2003年   22篇
  2002年   20篇
  2001年   10篇
  2000年   13篇
  1999年   8篇
  1998年   5篇
  1997年   9篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1974年   1篇
排序方式: 共有676条查询结果,搜索用时 31 毫秒
81.
Reversible solid oxide cells based on ceramic proton conductors have potential to be the most efficient system for large‐scale energy storage. The performance and long‐term durability of these systems, however, are often limited by the ionic conductivity or stability of the proton‐conducting electrolyte. Here new family of solid oxide electrolytes, BaHfxCe0.8?xY0.1Yb0.1O3?δ (BHCYYb), which demonstrate a superior ionic conductivity to stability trade‐off than the state‐of‐the‐art proton conductors, BaZrxCe0.8?xY0.1Yb0.1O3?δ (BZCYYb), at similar Zr/Hf concentrations, as confirmed by thermogravimetric analysis, Raman, and X‐ray diffraction analysis of samples over 500 h of testing are reported. The increase in performance is revealed through thermodynamic arguments and first‐principle calculations. In addition, lab scale full cells are fabricated, demonstrating high peak power densities of 1.1, 1.4, and 1.6 W cm?2 at 600, 650, and 700 °C, respectively. Round‐trip efficiencies for steam electrolysis at 1 A cm?2 are 78%, 72%, and 62% at 700, 650, and 600 °C, respectively. Finally, CO2? H2O electrolysis is carried out for over 700 h with no degradation.  相似文献   
82.
徐国卿  胡浩 《集成技术》2019,8(4):24-31
该文针对并列双导体在交变磁场交变作用下的电磁效应进行了探讨。在建立并列双导体交变 磁场中的基本电磁模型和等效分布参数网络模型的基础上,深入分析了并列双导体在交变磁场激励下的电磁效应和电流行为机理。实验结果显示,所提出的电流行为模型很好地解释了并列双导体在发电运行时出现的电流高频振荡现象。  相似文献   
83.
Stretchable conductors are vital and indispensable components in soft electronic systems. The development for stretchable conductors has been highly motivated with different approaches established to address the dilemma in the conductivity and stretchability trade‐offs to some extent. Here, a new strategy to achieve superelastic conductors with high conductivity and stable electrical performance under stretching is reported. It is demonstrated that by electrically anchoring conductive fillers with eutectic gallium indium particles (EGaInPs), significant improvement in stretchability and durability can be achieved in stretchable conductors. Different from the strategy of modulating the chemical interactions between the conductive fillers and host polymers, the EGaInPs provide dynamic and robust electrical anchors between the conductive fillers. A superelastic conductor which can achieve a high stretchability with 1000% strain at initial conductivity of 8331 S cm?1 and excellent cycling durability with about eight times resistance change (compared to the initial resistance at 0% strain before stretching) after reversibly stretching to 800% strain for 10 000 times is demonstrated. Applications of the superelastic conductor in an interactive soft touch device and a stretchable light‐emitting system are also demonstrated, featuring its promising applications in soft robotics or soft and interactive human–machine interfaces.  相似文献   
84.
Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast‐emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon‐based materials can function as catalysts for the oxygen‐reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon‐based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon‐electrode‐based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.  相似文献   
85.
Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side-products. This is particularly important for bioelectronic devices, which are designed to operate in biological systems. While redox-active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side-reactions with molecular oxygen during device operation. Here, electrochemical side reactions with molecular oxygen are shown to occur during organic electrochemical transistor (OECT) operation using high-performance, state-of-the-art OECT materials. Depending on the choice of the active material, such reactions yield hydrogen peroxide (H2O2), a reactive side-product, which may be harmful to the local biological environment and may also accelerate device degradation. A design strategy is reported for the development of redox-active organic semiconductors based on donor–acceptor copolymers that prevents the formation of H2O2 during device operation. This study elucidates the previously overlooked side-reactions between redox-active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte-gated devices in application-relevant environments.  相似文献   
86.
The applications of mixed ionic–electronic conductors are limited due to phase instability under a high direct current and large temperature difference. Here, it is shown that Cu2Se is stabilized through regulating the behaviors of Cu+ ions and electrons in a Schottky heterojunction between the Cu2Se host matrix and in-situ-formed BiCuSeO nanoparticles. The accumulation of Cu+ ions via an ionic capacitive effect at the Schottky junction under the direct current modifies the space-charge distribution in the electric double layer, which blocks the long-range migration of Cu+ and produces a drastic reduction of Cu+ ion migration by nearly two orders of magnitude. Moreover, this heterojunction impedes electrons transferring from BiCuSeO to Cu2Se, obstructing the reduction reaction of Cu+ into Cu metal at the interface and hence stabilizes the β-Cu2Se phase. Furthermore, incorporation of BiCuSeO in Cu2Se optimizes the carrier concentration and intensifies phonon scattering, contributing to the peak figure of merit ZT value of ≈ 2.7 at 973 K and high average ZT value of ≈ 1.5 between 400 and 973 K for the Cu2Se/BiCuSeO composites. This discovery provides a new avenue for stabilizing mixed ionic–electronic conduction thermoelectrics, and gives fresh insights into controlling ion migration in these ionic-transport-dominated materials.  相似文献   
87.
88.
Mixed ionic–electronic conducting oxygen‐permeable membranes can rapidly separate oxygen from air with 100% selectivity and low energy consumption. Combining reaction and separation in an oxygen‐permeable membrane reactor significantly simplifies the technological scheme and reduces the process energy consumption. Recently, materials design and mechanism investigations have provided insight into the microstructural and interfacial effects. The microstructures of the membrane surfaces and bulk are closely related to the interfacial oxygen exchange kinetics and bulk diffusion kinetics. Therefore, the permeability and stability of oxygen‐permeable membranes with a single‐phase structure and a dual‐phase structure can be adjusted through their microstructural and interfacial designs. Here, recent advances in the development of oxygen permeation models that provide a deep understanding of the microstructural and interfacial effects, and strategies to simultaneously improve the permeability and stability through microstructural and interfacial design are discussed in detail. Then, based on the developed high‐performance membranes, highly effective membrane reactors for process intensification and new technology developments are highlighted. The new membrane reactors will trigger innovations in natural gas conversion, ammonia synthesis, and hydrogen‐related clean energy technologies. Future opportunities and challenges in the development of oxygen‐permeable membranes for oxygen separation and reaction–separation coupling are also explored.  相似文献   
89.
Low conductivity over a wide temperature region due to ultra-slow ion migration dynamics is a key issue in the field of solid-state electrolytes (SSE), which needs to be solved and improved. Covalent organic frameworks (COFs), a rapidly growing class of porous crystalline materials, emerge as a new research hotspot in the field of SSEs. This is due to their homogeneously dispersed sites and well-defined pathways for ion diffusion, demonstrating great advantages over conventional non-porous solids. Herein, a composite solid electrolyte by confining organic ionic plastic crystal (OIPC) in the 1D ordered nanochannels of COFs as the host matrix for solid-state lithium-ion conduction, is reported. Due to the loss of coupling between PBu4+ cations and TFSI anions, the cation–anion interaction is weakened; and thus, the lithium-ion transportation is facilitated. As a result, the COF-confining OIPC SSEs show ultra-high lithium-ion conductivity of 0.048 S cm−1 at 30 °C and 0.021 S cm−1 at the extremely low temperature of −30 °C. The dynamic origin of this fast ion conduction is characterized by differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), and variable temperature solid-state nuclear magnetic resonance (NMR) spectroscopy.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号