首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10309篇
  免费   2522篇
  国内免费   71篇
电工技术   11篇
综合类   128篇
化学工业   7940篇
金属工艺   78篇
机械仪表   106篇
建筑科学   78篇
矿业工程   8篇
能源动力   101篇
轻工业   658篇
水利工程   2篇
石油天然气   100篇
武器工业   12篇
无线电   1190篇
一般工业技术   2033篇
冶金工业   378篇
原子能技术   14篇
自动化技术   65篇
  2024年   41篇
  2023年   238篇
  2022年   80篇
  2021年   604篇
  2020年   464篇
  2019年   392篇
  2018年   516篇
  2017年   564篇
  2016年   633篇
  2015年   740篇
  2014年   881篇
  2013年   809篇
  2012年   587篇
  2011年   601篇
  2010年   509篇
  2009年   608篇
  2008年   669篇
  2007年   575篇
  2006年   619篇
  2005年   475篇
  2004年   483篇
  2003年   430篇
  2002年   302篇
  2001年   171篇
  2000年   158篇
  1999年   116篇
  1998年   103篇
  1997年   75篇
  1996年   59篇
  1995年   36篇
  1994年   38篇
  1993年   47篇
  1992年   45篇
  1991年   31篇
  1990年   26篇
  1989年   25篇
  1988年   12篇
  1987年   5篇
  1986年   11篇
  1985年   40篇
  1984年   29篇
  1983年   18篇
  1982年   22篇
  1981年   3篇
  1980年   3篇
  1978年   1篇
  1976年   2篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible-light-driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly energy vectors. Among the current library of developed photocatalysts, organic conjugated polymers present unique advantages of sufficient light-absorption efficiency, excellent stability, tunable electronic properties, and economic applicability. As a class of rising photocatalysts, organic conjugated polymers offer high flexibility in tuning the framework of the backbone and porosity to fulfill the requirements for photocatalytic applications. In the past decade, significant progress has been made in visible-light-driven water splitting employing organic conjugated polymers. The recent development of the structural design principles of organic conjugated polymers (including linear, crosslinked, and supramolecular self-assembled polymers) toward efficient photocatalytic hydrogen evolution, oxygen evolution, and overall water splitting is described, thus providing a comprehensive reference for the field. Finally, current challenges and perspectives are also discussed.  相似文献   
12.
A series of anionic conjugated polyelectrolytes (CPEs) is synthesized based on poly(fluorene-co-phenylene) by varying the side-chain ionic density from two to six per repeat units (MPS2-TMA, MPS4-TMA, and MPS6-TMA). The effect of MPS2, 4, 6-TMA as interlayers on top of a hole-extraction layer of poly(bis(4-phenyl)-2,4,6-trimethylphenylamine (PTAA) is investigated in inverted perovskite solar cells (PeSCs). Owing to the improved wettability of perovskites on hydrophobic PTAA with the CPEs, the PeSCs with CPE interlayers demonstrate a significantly enhanced device performance, with negligible device-to-device dependence relative to the reference PeSC without CPEs. By increasing the ionic density in the MPS-TMA interlayers, the wetting, interfacial defect passivation, and crystal growth of the perovskites are significantly improved without increasing the series resistance of the PeSCs. In particular, the open-circuit voltage increases from 1.06 V for the PeSC with MPS2-TMA to 1.11 V for the PeSC with MPS6-TMA. The trap densities of the PeSCs with MPS2,4,6-TMA are further analyzed using frequency-dependent capacitance measurements. Finally, a large-area (1 cm2) PeSC is successfully fabricated with MPS6-TMA, showing a power conversion efficiency of 18.38% with negligible hysteresis and a stable power output under light soaking for 60 s.  相似文献   
13.
2,6-Bis(5-amino-1H-benzimidazol-2-yl)pyridine was prepared and characterized by Fourier transform infrared spectroscopy, elemental analysis, 1H-NMR, and 13C-NMR spectroscopic methods. Then a new poly(benzimidazole-amide) was synthesized by polymerization of the corresponding diamine and isophthalic acid. The obtained poly(benzimidazole-amide) exhibited good yield and high thermal stability. Due to the existence of benzimidazole moieties in polymer’s structure, it has the tendency to form complexes with metal ions. So, a new poly(benzimidazole-amide)/Co nanocomposite was prepared. Morphological studies revealed that metal nanoparticles were dispersed in the polymer matrix without any aggregation. poly(benzimidazole-amide)/Co nanocomposite was used as a catalyst in the oxidation of ethyl benzene to acetophenone with tert-butyl hydroperoxide.  相似文献   
14.
Polymers play an important role in the advancement of materials for use in cutting-edge applications. A direct consequence of an increased demand for more sophisticated materials has been a drive toward developing polymers that exhibit a higher level of structural control, especially in terms of the number and type of functionalities provided within the polymer framework. A family of polymers that meets such a challenge is based on the readily available AB2 monomer 2,2-bismethylolpropionic acid (bis-MPA) building block. Due to the ease with which the monomers can be synthesized, an array of multifunctional polymers have been produced including monodisperse dendrimers and dendrons and well-defined linear polymers as well as linear-dendritic hybridizations. This review outlines the evolution of the synthetic strategies for developing novel polymeric architectures based on bis-MPA and their assessment in both solution and substrate-based innovative applications.  相似文献   
15.
A study using three different pairs of electrochromic polymers (ECPs) synthesized onto plaques by means of a modified vapor phase polymerization (VPP) technique is presented. Restriction of the respective polymerization times, allowed both faster and slower polymerizing monomers to be controlled, and produced blended plaques with visually diffuse interfaces. The ECPs within the blended plaques retain their individual electrochromic behavior and when encapsulated into an electrochromic device, show outstanding optical switching performance with little degradation evident over 10,000 cycles, coupled with a switching time of the order of 1 second. Blends also allow multiple diffuse color changes within an electrochromic device, due to the difference in oxidation potentials of the individual ECPs, making them candidates for adaptive camouflage use. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42158.  相似文献   
16.
Thermally conductive polymers offer new possibilities for the heat dissipation in electric and electronic components, for example, by a three‐dimensional shaping of the heat sinks. To face safety regulations, improved fire performance of those components is required. In contrast to unfilled polymers, those materials exhibit an entirely different thermal behavior. To investigate the flammability, a phosphorus flame retardant was incorporated into thermally conductive composites of polyamide 6 and hexagonal boron nitride. The flame retardant decreased the thermal conductivity only slightly. However, the burning behavior changed significantly, due to a different heat propagation, which was investigated using a thermographic camera. An optimum content of hexagonal boron nitride for a sufficient thermal conductivity and fire performance was found between 20 and 30 vol%. The improvement of the fire performance was due to a faster heat release out of the pyrolysis zone and an earlier decomposition of the flame retardant. For higher contents of hexagonal boron nitride, the heat was spread faster within the part, promoting an earlier ignition and increasing the decomposition rate of the flame retardant.  相似文献   
17.
High‐performance adhesives require mechanical properties tuned to demands of the surroundings. A mismatch in stiffness between substrate and adhesive leads to stress concentrations and fracture when the bonding is subjected to mechanical load. Balancing material strength versus ductility, as well as considering the relationship between adhesive modulus and substrate modulus, creates stronger joints. However, a detailed understanding of how these properties interplay is lacking. Here, a biomimetic terpolymer is altered systematically to identify regions of optimal bonding. Mechanical properties of these terpolymers are tailored by controlling the amount of a methyl methacrylate stiff monomer versus a similar monomer containing flexible poly(ethylene glycol) chains. Dopamine methacrylamide, the cross‐linking monomer, is a catechol moiety analogous to 3,4‐dihydroxyphenylalanine, a key component in the adhesive proteins of marine mussels. Bulk adhesion of this family of terpolymers is tested on metal and plastic substrates. Incorporating higher amounts of poly(ethylene glycol) into the terpolymer introduces flexibility and ductility. By taking a systematic approach to polymer design, the region in which material strength and ductility are balanced in relation to the substrate modulus is found, thereby yielding the most robust joints.  相似文献   
18.
An antibacterial peptide (AMP), i.e., nisin, was covalently bound to gelatin through a protein–protein coupling. Various reaction conditions were tested to study and optimize parameters of grafting e.g., orientation and density of AMP, which could impact the final antibacterial activity of the modified biopolymer. Modification was investigated by Fourier transform infrared (FT‐IR) spectroscopy and zeta potential. The antibacterial activity of the nisin‐enriched gelatin was evaluated against two staphylococci bacterial strains, i.e., Staphylococus epidermidis and Staphylococcus aureus. A higher activity was found for gelatin modified at pH = 7.4 revealing an influence of the nisin orientation on the protein antibacterial property. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41825.  相似文献   
19.
The stretchable electrodes with excellent flexibility, electrical conductivity, and mechanical durability are the most fundamental components in the emerging and exciting field of flexible electronics. This article proposes a method for fabrication of such a stretchable electrode by embedding silver nanorods (AgNRs) into a polydimethylsiloxane (PDMS) matrix that is grown by a unique glancing angle deposition technique. The surface, mechanical, and electrical properties of PDMS are significantly changed after embedding the AgNRs in it. The results show that surface roughness and polarity increase after AgNRs are embedded in the PDMS matrix. Elastic modulus (E) and hardness (H) decrease with an increase in the indentation load as a result of the indentation depth effect. Due to strong interfacial adhesion of AgNRs embedded in the PDMS matrix, the E and H of nanocomposite are increased by 167.6 and 93.3% compared with PDMS film, respectively. Furthermore, the AgNRs-PDMS film has an electrical resistivity value in the order of 10−7 Ωm. It remains conductive during various mechanical strains such as bending, twisting, and stretching, which is demonstrated using a light-emitting diode circuit. Simultaneously, the antimicrobial activity of silver could make it a promising candidate for wearable electronics.  相似文献   
20.
Neat poly (lactic acid) (PLA) and PLA/cassava bagasse (CB) composites were used to produce seedling tubes by extrusion and injection molding. The tubes were buried in simulated soil, and their biodegradation was investigated by weight loss, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). After 180 days, the composites' biodegradation was higher than neat PLA material, and the higher the CB content, the higher the biodegradation, which caused fissures and voids in the material. The biodegradation of PLA/CB composites increased the phosphorus content in the soil after 180 days. Composites of PLA with CB, an abundant agro-industrial residue in Brazil, are promising because they can reduce the environmental impact due to CB's proper destination, and the composites' costs and biodegradation are faster than pure PLA material. Both the faster biodegradation of the tube and the higher P content are advantageous for seedling tubes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号