首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1960篇
  免费   656篇
  国内免费   135篇
电工技术   40篇
综合类   94篇
化学工业   741篇
金属工艺   229篇
机械仪表   108篇
建筑科学   25篇
矿业工程   25篇
能源动力   156篇
轻工业   133篇
水利工程   17篇
石油天然气   58篇
武器工业   23篇
无线电   232篇
一般工业技术   701篇
冶金工业   31篇
原子能技术   67篇
自动化技术   71篇
  2024年   19篇
  2023年   101篇
  2022年   108篇
  2021年   126篇
  2020年   191篇
  2019年   174篇
  2018年   177篇
  2017年   142篇
  2016年   144篇
  2015年   163篇
  2014年   159篇
  2013年   213篇
  2012年   138篇
  2011年   158篇
  2010年   79篇
  2009年   90篇
  2008年   85篇
  2007年   78篇
  2006年   67篇
  2005年   64篇
  2004年   56篇
  2003年   37篇
  2002年   19篇
  2001年   23篇
  2000年   22篇
  1999年   20篇
  1998年   12篇
  1997年   20篇
  1996年   18篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1985年   2篇
  1959年   2篇
  1951年   1篇
排序方式: 共有2751条查询结果,搜索用时 0 毫秒
71.
72.
73.
74.
Immunophenotyping is widely used to characterize cell populations in basic research and to diagnose diseases from surface biomarkers in the clinic. This process usually requires complex instruments such as flow cytometers or fluorescence microscopes, which are typically housed in centralized laboratories. Microfluidics are combined with an integrated electrical sensor network to create an antibody microarray for label‐free cell immunophenotyping against multiple antigens. The device works by fractionating the sample via capturing target subpopulations in an array of microfluidic chambers functionalized against different antigens and by electrically quantifying the cell capture statistics through a network of code‐multiplexed electrical sensors. Through a combinatorial arrangement of antibody sequences along different microfluidic paths, the device can measure the prevalence of different cell subpopulations in a sample from computational analysis of the electrical output signal. The device performance is characterized by analyzing heterogeneous samples of mixed tumor cell populations and then the technique is applied to determine leukocyte subpopulations in blood samples and the results are validated against complete blood cell count and flow cytometry results. Label‐free immunophenotyping of cell populations against multiple targets on a disposable electronic chip presents opportunities in global health and telemedicine applications for cell‐based diagnostics and health monitoring.  相似文献   
75.
Magnetotactic bacteria (MTB) naturally synthesize magnetic nanoparticles that are wrapped in lipid membranes. These membrane‐bound particles, which are known as magnetosomes, are characterized by their narrow size distribution, high colloidal stability, and homogenous magnetic properties. These characteristics of magnetosomes confer them with significant value as materials for biomedical and industrial applications. MTB are also a model system to study key biological questions relating to formation of bacterial organelles, metal homeostasis, biomineralization, and magnetoaerotaxis. The similar size scale of nano and microfluidic systems to MTB and ease of coupling to local magnetic fields make them especially useful to study and analyze MTB. In this Review, a summary of nano‐ and microtechnologies that are developed for purposes such as MTB sorting, genetic engineering, and motility assays is provided. The use of existing platforms that can be adapted for large‐scale MTB processing including microfluidic bioreactors is also described. As this is a relatively new field, future synergistic research directions coupling MTB, and nano‐ and microfluidics are also suggested. It is hoped that this Review could start to bridge scientific communities and jump‐start new ideas in MTB research that can be made possible with nano‐ and microfluidic technologies.  相似文献   
76.
77.
A photoresponsive organogel surface (POS), which integrates characteristics of the photothermal property of Fe3O4 nanoparticles and the low hysteresis feature of lubricant‐infused organogels, is shown. A photothermally induced dynamic temperature gradient can be formed rapidly at the location of near‐infrared‐light irradiation (NIR) on POS with suitable Fe3O4 nanoparticles content. Thus, various droplets (e.g., water, glycerol, ethylene glycol, propylene glycol, and ethanol) can be transported effectively and nimbly (e.g., along desired trajectories with controllable velocity and direction, even run uphill and deliver solid particles). This work reveals a synergistic effect between the asymmetrical droplet deformation and the inside Marangoni flows, which forms a unique driving force for droplet transport with high efficiency. This finding offers insight into the design of novel responsive interface materials for droplet transportation, which would be significant for laboratory‐on‐a‐chip contexts, mass transportation, and microengines.  相似文献   
78.
79.
建立AP1000次级波纹板汽水分离器内两相流动的数学模型,随后数值模拟波纹板内的两相流动,并分析其分离性能。进而对波纹板结构进行优化,得到具有较高分离效率和较低流动阻力的新型波纹板。首先分别建立波纹板内部蒸汽相和液滴相运动的数学模型。然后通过自编程序与Fluent软件耦合对该两相流动模型数值求解。随后得到波纹板进出口总压降,并通过模拟液滴在波纹板内的运动轨迹,得到波纹板的分离效率和内部液滴湿度分布。进而以分离效率和流动压降为目标优化波纹板结构,设计得到具有较高分离效率和较低流动阻力的新型波纹板。本文提出的数值模拟方法对汽水分离器结构的设计和优化具有较强的指导意义。  相似文献   
80.
Bubble breakup with permanent obstruction in an asymmetric microfluidic T‐junction is investigated experimentally. The breakup process of bubbles can be divided into three stages: squeezing, transition, and pinch‐off stages. In the squeezing stage, the thinning of the bubble neck is mainly controlled by the velocity of the fluid flowing into the T‐junction, and the increase of the liquid viscosity can promote this process. In the transition stage, the minimum width of bubble neck decreases linearly with time. In the pinch‐off stage, the effect of the velocity of the fluid flowing into the T‐junction on the thinning of the bubble neck becomes weaker, and the increase of the liquid viscosity would delay this process. The evolution of the minimum width of the bubble neck with the remaining time before the breakup can be scaled by a power–law relationship. The bubble length has little influence on the whole breakup process of bubbles. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1081–1091, 2015  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号