首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80058篇
  免费   8922篇
  国内免费   3550篇
电工技术   1430篇
技术理论   1篇
综合类   4499篇
化学工业   26742篇
金属工艺   10648篇
机械仪表   2136篇
建筑科学   4138篇
矿业工程   1455篇
能源动力   1600篇
轻工业   9773篇
水利工程   867篇
石油天然气   2009篇
武器工业   447篇
无线电   3457篇
一般工业技术   18043篇
冶金工业   3203篇
原子能技术   472篇
自动化技术   1610篇
  2024年   463篇
  2023年   1736篇
  2022年   2579篇
  2021年   3422篇
  2020年   3237篇
  2019年   2817篇
  2018年   3062篇
  2017年   3489篇
  2016年   3580篇
  2015年   3713篇
  2014年   4570篇
  2013年   5717篇
  2012年   5154篇
  2011年   6258篇
  2010年   4263篇
  2009年   4625篇
  2008年   3898篇
  2007年   4411篇
  2006年   4189篇
  2005年   3294篇
  2004年   3150篇
  2003年   2726篇
  2002年   2262篇
  2001年   1633篇
  2000年   1496篇
  1999年   1132篇
  1998年   988篇
  1997年   844篇
  1996年   664篇
  1995年   593篇
  1994年   443篇
  1993年   341篇
  1992年   322篇
  1991年   252篇
  1990年   279篇
  1989年   281篇
  1988年   118篇
  1987年   85篇
  1986年   75篇
  1985年   77篇
  1984年   75篇
  1983年   39篇
  1982年   63篇
  1981年   8篇
  1980年   46篇
  1979年   14篇
  1976年   6篇
  1975年   6篇
  1974年   8篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
The demand for food production has been constantly increasing due to rising population. In developed countries, for example, the emergence of regional production of old grains that are rarely utilized, along with the production of commonly consumed grains, has gained importance in recent years. These grains, known collectively as ancient or heirloom grains, have offered both farmers and consumers novel ways of cultivation and products with interesting taste, characteristics and nutritional value. Among the 30 000 plant species known, only five cereals currently provide more than 50% of the world's energy intake – bread wheat (Triticum aestivum), rice (Oryza sativa), sorghum (Sorghum bicolor), millets (Panicum sp.) and maize (Zea mays). The excessive utilization of these selected species has a great potential to cause genetic losses and difficulty in bridging future agricultural demands. Teff (Eragrostis tef), an ancient grain extensively cultivated in countries like Eritrea and Ethiopia, provides promising alternatives for new food uses since its nutritional value is significantly higher than most others cereal grains. The absence of gluten allows flexibility in food utilization since it can be directly substituted to gluten-containing products. The grain also offers an excellent balance of essential amino acids and minerals, which can fulfil the recommended daily intake and eliminates the need for fortification and enrichment. This review provides a general overview of the physical properties and nutritional composition of teff grains related to processing and applications in the food and feed industries. The current status of teff utilization, as well as the challenges in production and commercialization, and future opportunities is presented and discussed.  相似文献   
92.
《Ceramics International》2021,47(23):33259-33268
The demand for high-performance grinding wheels is gradually increasing due to rapid industrial development. Vitrified bond diamond composite is a versatile material for grinding wheels used in the backside grinding step of Si wafer production. However, the properties of the vitrified bond diamond composite are controlled by the characteristics of the diamond particles, the vitrified bond, and pores and are very complicated. The main objective of this study was to investigate the effects of SiO2–Na2O–B2O3–Al2O3–Li2O–K2O–CaO–MgO–ZrO2–TiO2–Bi2O3 glass powder on the sintering, microstructure, and mechanical properties of the vitrified bond diamond composite. The elemental distributions of the composite were analyzed using electron probe micro-analysis (EPMA) to clarify the diffusion behaviors of various elements during sintering.The results showed that the relative density and transverse rupture strength of the composite sintered at 620 °C were 91.7% and 126 MPa, respectively. After sintering at 680 °C, the glass powder used in this study exhibited a superior forming ability without an additional pore foaming agent. The relative density and transverse rupture strength of the composite decreased to 48.2% and 49 MPa, respectively. Moreover, the low sintering temperature of this glass powder protected the diamond particles from graphitization during sintering, as determined by X-ray diffraction and Raman spectrum. Furthermore, the EPMA results indicate that Na diffused and segregated at the interface between the diamond particles and vitrified bond, contributing to the improved bonding. The diamond particles can remain effectively bonded by the vitrified bond even after fracture.  相似文献   
93.
《Ceramics International》2022,48(5):6208-6217
Three different coatings, namely TiAlN, TiAlN (external)/NbN (internal) and NbN (external)/TiAlN (internal), were deposited on cemented carbides by arc ion plating. The comparative investigation conducted in this study elucidates the effect of the NbN layer and coating systems on the growth, mechanical properties, and tribological performance of the coatings. The results showed that the surface of the TiAlN and TiAlN/NbN coatings was smoother when TiAlN served as the external layer. The NbN/TiAlN coating, wherein NbN formed the external layer, had a much rougher but more symmetrical surface. With the introduction of the NbN layer, the increased micro stress induced a lower adhesion strength in the TiAlN/NbN and NbN/TiAlN coatings. The TiAlN/NbN and NbN/TiAlN coatings exhibited higher hardness and hardness/effective elastic modulus (H/E*). During the friction test, when the temperature was elevated to 700 °C, the tribological performance of the monolayer TiAlN coating was the lowest because of the TiO2-induced breakage of the dense tribo-oxide film. The NbN layer participated in the formation of a NbOx film at elevated temperatures, which was responsible for the high tribological performance of the two bilayer coatings. When the NbN layer was on the outermost layer and in direct contact with the elevated temperature atmosphere, the NbN/TiAlN coating generated a tribo-oxide film with high integrity, and its coefficient of friction decreased by 27% of that at room temperature. Therefore, the NbN/TiAlN coating exhibited the highest wear resistance at 700 °C.  相似文献   
94.
The Fe−Ni−TiO2 nanocomposite coatings were electrodeposited by pulse frequency variation. The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies. By increasing the pulse frequency from 10 to 500 Hz, the iron and TiO2 nanoparticles contentswere increased in expense of nickel content. XRD patterns showed that by increasing the frequency to 500 Hz, an enhancement ofBCC phase was observed and the grain size of deposits was reduced to 35 nm. The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO2 nanoparticles into the Fe−Ni matrix (5.13 wt.%). Moreover, the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.  相似文献   
95.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   
96.
Linear-viscoelastic characteristics and performance are evaluated throughout the blending process of polyethylene and polypropylene with bitumen. Results indicate that type, form and percentage of polyolefin play a significant role in the time evolution of the composite's mechanical response. Toluene extraction of modified bitumen revealed, for the first time, the formation of a sponge-like polymer network. Visual inspection and Fourier transform infrared analysis of the polyolefins recovered after extraction indicates higher affinity of the polyethylene with bitumen in agreement with the rheological test results. The use of polypropylene is discouraged if rutting performance is a concern, and polyethylene in both pellets and powder form at 4%, and after 210 min of blending produces a modified bitumen with acceptable performance.  相似文献   
97.
A new strategy for the selective coating of tin sulfide (SnS) on the surface of moth‐eye patterned (MEP) conducting polymer film is studied by considering the optical properties of the antireflective moth‐eye pattern and flexibility of polymer films. The semiconductor SnS is selectively coated on the surface of MEP microdomes of poly(3,4‐ethylenedioxythiophene) poly(styrene‐sulfonate) (PEDOT:PSS) film. The SnS coated MEP film is obtained by using pore selectively SnS thin layer functionalized polystyrene honeycomb‐patterned porous (HCP) film as a template. Aqueous PEDOT:PSS solution is poured on the SnS functionalized HCP films and detached for the fabrication of SnS coated MEP films. The films show a satisfactory photo‐responsive property under solar stimulated light illumination due to the antireflective MEP structure of PEDOT film and homogenous SnS coating on the surface of the conducting polymer.  相似文献   
98.
Environmental concerns continue to pose the challenge to replace petroleum-based products with renewable ones completely or at least partially while maintaining comparable properties. Herein, rigid polyurethane (PU) foams were prepared using soy-based polyol for structural and thermal insulation applications. Cell size, density, thermal resistivity, and compression force deflection (CFD) values were evaluated and compared with that of petroleum-based PU foam Baydur 683. The roles of different additives, that is, catalyst, blowing agent, surfactants, and different functionalities of polyol on the properties of fabricated foam were also investigated. For this study, dibutyltin dilaurate was employed as catalyst and water as environment friendly blowing agent. Their competitive effect on density and cell size of the PU foams were evaluated. Five different silicone-based surfactants were employed to study the effect of surface tension on cell size of foam. It was also found that 5 g of surfactant per 100 g of polyol produced a foam with minimum surface tension and highest thermal resistivity (R value: 26.11 m2·K/W). However, CFD values were compromised for higher surfactant loading. Additionally, blending of 5 g of higher functionality soy-based polyol improved the CFD values to 328.19 kPa, which was comparable to that of petroleum-based foam Baydur 683.  相似文献   
99.
100.
In this paper, cenosphere particles embedded in AA2014 aluminium matrix are used to fabricate syntactic foam by stir casting method. The particle size is about 100?µm and foam density is about 1990?kg?m?3. Compression tests at strain rate 0.001/s are performed on foam samples to characterise their mechanical properties which are then used in numerical analysis on commercial finite element analysis software ABAQUS/CAE with isotropic elastic-plastic material model. Experimental and numerical results show good conformity in deformation behaviour with elastic and plateau zones showing average deviations less than 5% and 20%, respectively. Foams showed high yield stress and energy absorption capabilities that can be useful in making blast and impact resistant structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号