首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5174篇
  免费   393篇
  国内免费   154篇
电工技术   594篇
综合类   190篇
化学工业   1632篇
金属工艺   350篇
机械仪表   52篇
建筑科学   14篇
矿业工程   68篇
能源动力   1329篇
轻工业   65篇
水利工程   8篇
石油天然气   25篇
武器工业   7篇
无线电   362篇
一般工业技术   662篇
冶金工业   308篇
原子能技术   12篇
自动化技术   43篇
  2024年   27篇
  2023年   168篇
  2022年   141篇
  2021年   217篇
  2020年   218篇
  2019年   180篇
  2018年   148篇
  2017年   201篇
  2016年   139篇
  2015年   117篇
  2014年   218篇
  2013年   195篇
  2012年   268篇
  2011年   451篇
  2010年   373篇
  2009年   315篇
  2008年   328篇
  2007年   380篇
  2006年   267篇
  2005年   193篇
  2004年   210篇
  2003年   161篇
  2002年   162篇
  2001年   99篇
  2000年   104篇
  1999年   83篇
  1998年   68篇
  1997年   51篇
  1996年   49篇
  1995年   46篇
  1994年   29篇
  1993年   15篇
  1992年   18篇
  1991年   13篇
  1990年   11篇
  1989年   15篇
  1988年   22篇
  1987年   5篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1951年   1篇
排序方式: 共有5721条查询结果,搜索用时 0 毫秒
91.
The durability of Nafion® polymer electrolyte membranes (PEMs) with potential application in PEM fuel cells has been investigated using accelerated durability tests to understand their degradation mechanism. After the attack by Fenton radicals, the Nafion®111 membranes and the solution produced were collected for analysis. The existence of F ions in the solution indicated the chemical decomposition of the Nafion® membranes during radical attacks. The F- emission rate (FER) was about , corresponding to 0.024 wt% of F released from the membrane per hour. The NMR and FTIR spectrums demonstrated the polymer fragments mostly existed as whole side chains of the Nafion® membrane. This result revealed that the degradation was originated from the decomposition of polymer main chain. Furthermore, the reflectance-FTIR revealed that the degradation of the PEMs was from the decomposition of the repeating units in the polymer main chains. With the increased loss of repeating units, small bubbles with the diameter of several microns started to form in Nafion® membrane. These bubbles made the membrane vulnerable to hazards of gas crossover, which further led a catastrophic failure of the proton exchange membrane.  相似文献   
92.
The porosity effect of catalyst electrodes in membrane-electrode assemblies (MEAs) using a hydrocarbon-based polymer as electrolyte and ionomer was investigated on physical and electrochemical properties by varying the content of ionomer binder (dry condition) in the catalyst electrodes. The MEAs were compared with the Nafion®-based MEA using Nafion® 112 and 5 wt.% ionomer solution (EW = 1100) in terms of porosity values, scanning electron microscopic images, Nyquist plots, dielectric spectra and IV polarization curves. In this study, sulfonated poly(ether ether ketone) (SPEEK) membranes with 25 ± 5 μm of thickness and 5 wt.% ionomer solutions have been prepared. The prepared membranes were characterized in terms of FT-IR, DSC and proton conductivity. Proton conductivity of the SPEEK membranes was compared with one of the Nafion® membranes with relative humidity. The porosity of the catalyst electrodes was calculated using the properties of catalyst, ionomer solution and solvent. As a result, the performance of the new type polymer (i.e., SPEEK in this study)-based MEA with the similar membrane conductivity and porosity of the catalyst electrode in the Nafion® MEA was similar to that of the Nafion® MEA.  相似文献   
93.
To improve cathode–electrolyte interfaces of solid oxide fuel cells (SOFCs), dense YSZ electrolyte membranes with indented surfaces were fabricated on tubular NiO/YSZ anode supports by two comparable methods. Electrochemistry impedance spectroscopy (EIS) and current–voltage tests of the cells were carried out to characterize the cathode–electrolyte interfaces. Results showed that the electrode polarization resistances of the modified cells were reduced by 52% and 35% at 700 °C, and the maximum power densities of cells were remarkably increased, even by 146.6% and 117.8% at lower temperature (700 °C), respectively. The indented surfaces extended the active zone of cathode and enhanced interfacial adhesion, which led to the major improvement in the cell performance.  相似文献   
94.
The hygro-thermo-mechanical properties and response of a class of reinforced perfluorosulfonic acid membranes (PFSA), that has potential application as an electrolyte in polymer fuel cells, are investigated through both experimental and numerical modeling means. A critical set of material properties, including Young's modulus, proportional limit stress, break stress and break strain, is determined for a range of temperature and humidity levels in a custom-built environmental test apparatus. The swelling strains are also determined as functions of temperature and humidity level. To elucidate the mechanical response and the potential effect these properties have on the mechanical durability, mechanics-based simulations are performed using the finite element method (ABAQUS). The results indicate that the relatively high strength of the experimental membrane, in combination with its relatively low in-plane swelling due to water absorption, should have a positive influence on membrane durability, potentially leading to longer life times for polymer electrolyte membrane fuel cells (PEMFC).  相似文献   
95.
In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 μm SSZ and 4 μm SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm−2 at 650 °C and 0.85 W cm−2 at 700 °C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (Rel) and electrode polarization resistance (Rp,a+c) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O2−x during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the Rel value (0.32 Ω cm2) at 650 °C, which is almost one order of magnitude higher than the calculated value.  相似文献   
96.
A novel macroporous nanocomposite polymer membrane (NCPM) based on poly(vinylidene difluoride-co-hexafluoropropylene) [P(VDF-HFP)] copolymer was prepared by in situ hydrolysis of Ti(OC4H9)4 using a non-solvent-induced phase separation technique. SEM micrograph shows that the yielding TiO2 nanoparticles are dispersed uniformly in the polymer matrix and there are a lot of spherical macropores connecting with each other by some smaller pores. DSC results exhibit that the crystallinity of polymer matrix decreases with the incorporation of TiO2 nanoparticles. The tensile stress of the NCPM is 9.69 MPa and its fracture strain 74.4%. After immersion in 1.0 mol l−1 LiPF6/ethyl carbonate (EC)–dimethyl carbonate (DMC), the ionic conductivity of the obtained nanocomposite polymer electrolyte (NCPE) is 0.98 × 10−3 S cm−1 at 20 °C. Lithium-ion batteries, which use this kind of NCPE as the separator and electrolyte, display good discharging performance at different current densities, presenting promise for its practical application.  相似文献   
97.
A nickel-rich layer about 100 μm in thickness with improved conductivity was formed on the surface of austenitic stainless steel 316L (SS316L) by ion implantation. The effect of ion implantation on the corrosion behavior of SS316L was investigated in 0.5 M H2SO4 with 2 ppm HF solution at 80 °C by potentiodynamic test. In order to investigate the chemical stability of the ion implanted SS316L, the potentiostatic test was conducted in an accelerated cathode environment and the solutions after the potentiostatic test were analyzed by inductively coupled plasma atomic emission spectrometer (ICP-AES). The results of potentiodynamic test show that the corrosion potential of SS316L is shifted toward the positive direction from −0.3 V versus SCE to −0.05 V versus SCE in anode environment and the passivation current density at 0.6 V is reduced from 11.26 to 7.00 μA cm−2 in the cathode environment with an ion implantation dose of 3 × 1017 ions cm−2. The potentiostatic test results indicate that the nickel implanted SS316L has higher chemical stability in the accelerated cathode environment than the bare SS316L, due to the increased amount of metallic Ni in the passive layer. The ICP results are in agreement with the electrochemical test results that the bare SS316L has the highest dissolution rate in both cathode and anode environments and the Ni implantation markedly reduces the dissolution rate. A significant improvement of interfacial contact resistance (ICR) is achieved for the SS316L implanted with nickel as compared to the bare SS316L, which is attributed to the reduction in passive layer thickness caused by the nickel implantation. The ICR values for implanted specimens increase with increasing dose.  相似文献   
98.
Tellurium (Te)-modified carbon catalyst for oxygen reduction reaction was prepared through chemical reduction of telluric acid followed by the pyrolysis process at elevated temperatures. The catalyst was found to be active for oxygen reduction reaction. High-temperature pyrolysis plays a crucial role in the formation of the active sites of the catalysts. When the pyrolysis was conducted at 1000 °C, the catalyst exhibited the onset potential for oxygen reduction as high as 0.78 V vs. NHE and generated less than 1% H2O2 during oxygen reduction. The performance of the membrane–electrode assembly prepared with the Te-modified carbon catalyst was also evaluated.  相似文献   
99.
100.
The Li2S–Cu composite electrode materials were prepared by mechanical milling and applied to all-solid-state lithium cells using the Li2S–P2S5 glass–ceramic electrolyte. The addition of Cu and the mechanical activation improved the electrochemical performance of Li2S in all-solid-state cells. The In/Li2S–Cu cells were charged and then discharged at room temperature, suggesting that Li2S was utilized as a lithium source. The cells exhibited high discharge capacity of about 490 mAh g−1 at the 1st cycle. The SEM and EDX analyses suggested that the amorphous LixCuS domain was partially formed by milling, and the domain played an important role in the improvement of capacity. The electrochemical reaction mechanism of the Li2S–Cu composites was discussed on the basis of the mechanism of the S–Cu composite electrode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号