首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8732篇
  免费   945篇
  国内免费   171篇
电工技术   420篇
综合类   467篇
化学工业   4427篇
金属工艺   285篇
机械仪表   135篇
建筑科学   505篇
矿业工程   180篇
能源动力   1140篇
轻工业   643篇
水利工程   6篇
石油天然气   175篇
武器工业   70篇
无线电   131篇
一般工业技术   735篇
冶金工业   346篇
原子能技术   17篇
自动化技术   166篇
  2024年   62篇
  2023年   123篇
  2022年   239篇
  2021年   367篇
  2020年   352篇
  2019年   288篇
  2018年   226篇
  2017年   334篇
  2016年   276篇
  2015年   291篇
  2014年   535篇
  2013年   525篇
  2012年   622篇
  2011年   696篇
  2010年   489篇
  2009年   490篇
  2008年   449篇
  2007年   591篇
  2006年   503篇
  2005年   418篇
  2004年   366篇
  2003年   305篇
  2002年   237篇
  2001年   219篇
  2000年   203篇
  1999年   156篇
  1998年   123篇
  1997年   87篇
  1996年   69篇
  1995年   38篇
  1994年   35篇
  1993年   37篇
  1992年   33篇
  1991年   9篇
  1990年   9篇
  1989年   14篇
  1988年   8篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1951年   5篇
排序方式: 共有9848条查询结果,搜索用时 0 毫秒
101.
低烟阻燃高抗冲聚苯乙烯的研究   总被引:17,自引:0,他引:17  
用氢氧化镁(MH)和硼酸锌(ZB)与十溴二苯醚(DBDPO)-氧化锑或包覆红磷共同使用以阻燃高抗冲聚苯乙烯(HIPS)可使燃烧过程中的发烟量降低40%左右。与十溴二苯醚-氧化锑和包覆红磷体系相比,聚苯醚(PPO)和一种磷酸酯阻燃剂配合作用时HIPS的阻燃、抑烟作用以及对力学性能有较大改善作用。  相似文献   
102.
硅烷/钛酸酯复配偶联剂对水镁石粉/LDPE性能影响   总被引:3,自引:0,他引:3  
比较了硬酯酸、硅烷、钛酸酯和铝酸酯四种表面处理剂对水镁石粉体表面改性活化效果,根据硅烷和钛酸酯对体系的影响优势用二者复配对该粉体进行表面处理,作为阻燃剂研究了它对LDPE体系的加工性能、拉伸性能及阻燃性能的影响。采用拉伸性能、氧指数将其和最大热释放速度等以及熔融指数对阻燃材料的性能进行了表征。结果表明:复配表面处理剂/水镁石粉/LDPE体系比单一表面处理剂/水镁石粉/LDPE体系的综合性能有显著提高,处理后的粉体填加量比单一表面处理剂改性的粉体填加量多20phr。  相似文献   
103.
Al(OH)3是LDPE/EVA主要的阻燃,消烟填充剂。研究了不同粒度,表面处理及填充量的Al(OH)3对LDPE/EVA的氧指数(OI),烟密度等级(SDR)和物理机械性能的影响。  相似文献   
104.
In order to improve the flame retardancy and antistatic properties of polyamide 6 (PA6) at as low amount of additives as possible, an integrated-functional additive was synthesized by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and multiwalled carbon nanotubes (MWCNTs). The results showed 2 wt% of DOPO-MWCNTs distributed in PA6 formed an electric network and decreased volume resistivity sharply to 3.1 × 108 Ω cm. In other words, it helped PA6 to get to the percolation threshold of semiconductor. By using of 3 wt% DOPO-MWCNTs, the severe dripping in burning of PA6 was almost controlled. The possible reason was also ascribed to the network formed by evenly dispersed DOPO-MWCNTs, which strengthened the char structure and held severe dripping of PA6. As a result, the heat and smoke release were also suppressed obviously. The most important is that CO release was about half cut in CONE test.  相似文献   
105.
The flame retardant polypropylene containing the micro-envelope core-shell structure flame retardant, which encapsulated ammonium polyphosphate into melamine-formaldehyde resin and sodium silicate through in situ polymerization was prepared with polyamide 6, added as a carbon-forming agent. The composition of ammonium polyphosphate, encapsulated ammonium polyphosphate with melamine-formaldehyde resin and the micro-envelope core-shell structure flame retardant were characterized. The fire safety and thermal stability were investigated and showed an improvement including limiting oxygen index, thermogravimetric analysis, vertical burning tests, and microscale combustion calorimeter. The burned compounds were also studied to confirm the burning mechanism. The results showed the flame retardant performance had been greatly improved, while polyamide 6 had better char-forming effect. Besides, the water solubility of flame retardants and their influence on the mechanical properties of polypropylene were also investigated. The results on the effects of additives demonstrated a high efficiency flame retardant to polypropylene. A core-shell flame retardant that sodium silicate and melamine-formaldehyde resin-coated ammonium polyphosphate had been constructed. The effect of the built flame retardant system on the combustion performance of polypropylene was studied from the mechanism and performance. The LOI of the most flame retardant polypropylene reached 28.6%, and UL-94 reached the V-0 level.  相似文献   
106.
Organic–inorganic hybrid flame retardant was obtained by modifying aluminum hydroxide with different particle size with 1-hydroxyethylidene-1,1-diphosphonic acid. The structure of the organic–inorganic hybrid flame retardant is characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy, while 1H-NMR spectroscopy only characterizes specific samples. The thermal stability and flame retardancy of the samples were analyzed by thermogravimetric analysis, limiting oxygen index (LOI), vertical combustion of UL-94 and cone calorimeter. The results show that the modified 10 μm aluminum hydroxide has a better effect than the 25 μm aluminum hydroxide and 100 nm aluminum hydroxide. Compared with pure polyethylene terephthalate (PET), the LOI value of the best sample is increased by 24.4%, and UL-94 V reaches V-0 level. Heat release rate, total heat release rate, and carbon monoxide production rate decreased by 45.8%, 33.2%, and 41.5%, respectively, compared to pure PET. The results showed that the aluminum hydroxide with a particle size of 10 μm exhibited the best flame retardant effect, which could be attributed to the decomposition of organic phosphoric acid and the dehydration of aluminum hydroxide, yielding a higher amount of residual carbon.  相似文献   
107.
The compound (4-fluorophenyl)(phenyl) phosphine oxide (4-FPO) was designed, synthesized, and used in the modification of epoxy resin (EP). The 4-FPO-modified EP was prepared by curing the reaction mixture of diglycidyl ether of bisphenol A (DGEBA) and 4-FPO in the presence of 4,4′-diaminodiphenylsulfone (DDS). Compared with the unmodified EP, the limiting oxygen index value of the EP/4-FPO-0.6 (4-FPO-modified EP with 0.6 wt% of phosphorus) increased to 31.6%, and the sample achieved UL-94 V-0 rating. The peak of the heat release rate, average of the heat release rate, and total heat release of EP/4-FPO-0.6 were reduced by 39, 24, and 19%, respectively. Mechanism study showed that the quenching effect in the gas and barrier effect in the condensed phase were responsible for the enhanced flame-retardant properties of the 4-FPO-modified EP. The results showed that hydrophobicity and dielectric properties of the modified EP were clearly improved.  相似文献   
108.
Sustainable development strategy has aroused a great interest in biomass resources as alternative raw materials. A kind of biomass-derived poly(butylene succinate) (PBS), has been developed as porous foams to reduce resource exhaustion and meet lightweight demands. For fire-safety in-service, graphene oxide (GO) was functionalized by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to combine flame-retardant elements and heat-barrier function. Hence, a very low loading level of P-containing GO as only 5 wt% could reduce peak heat release rate (pHRR) and total heat release (THR) of PBS-based foams by 58.5% and 22.3%, respectively. Meanwhile, N-/P-doped mesoporous char with a specific surface area of 136 m2/g, which derived from combustion of flame-retardant foaming PBS, contributes to a potential of energy storage applications in the capacitor or the anode of Li-ion battery with long-term stability. Overall, the sustainability of bio-based polyester could integrate lightweight of foaming, and be extended to utilization after use via facile combustion inspired by flame-retardancy design.  相似文献   
109.
A modified kaolinite by grafting with phytic acid (PA-g-Kaol) is fabricated, and it was introduced into ethylene vinyl acetate (EVA) with intumescent flame retardancy (IFR) together to improve the flame retardancy of EVA composites. The results show the limiting oxygen index value of EVA/ (18.0 wt% IFR)/ (2.0 wt% PA-g-Kaol) is 30.8%. Meanwhile, there is only one dripping produced in the vertical burning test. What's more, the flame-retardant mechanism is demonstrated by TG-IR, real-time-IR and GC–MS analysis. The results indicate that some pyrolytic products of IFR and PA-g-Kaol, like ammonia and phosphoric acid, catalyze the crosslinking of EVA and flame retardant, the resultant compact char protects the substrate from further burning.  相似文献   
110.
In this work, to improve its dispersion and flame retardancy, graphene oxide (GO) was functionalized by silane coupling agent KH550 and 1-butyl-3-methylimidazole hexafluorophosphate (PF6-ILs), and characteristics of the PF6-ILs@GO was obtained by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Then, the synergistic flame retardant of GO or PF6-ILs@GO and melamine pyrophosphate (MPP) were applied for epoxy resin (EP) materials. Specifically, the limiting oxygen index (LOI) value of EP with 0.1 wt% PF6-ILs@GO was increased to 29.2% from 27.5% of EP/MPP composites, and the UL-94 test reached the V-0 rating. The CCT results showed that the total heat release (THR) and total smoke release (TSP) of EP/MPP/PF6-ILs@GO composites were significantly 24.4% and 53.4% lower than that of EP/MPP composites. Besides, the thermal behavior investigated by TGA indicated that the char-forming effect of GO and PF6-ILs@GO was great, the residual char of EP/MPP/PF6-ILs@GO composites was as high as 19.5% at 700°C, and its thermal stability was higher than that of EP/MPP composites. On the other hand, the tensile strength of EP/MPP/GO and EP/MPP/PF6-ILs@GO composites were increased by 15.6% and 28.3% compared with EP/MPP composites. According to SEM analysis, the EP/MPP/GO composites formed a good protective char layer, which can effectively improve flame retardancy of EP. This research represents a new method of flame retardant modified GO to improve the flame retardancy and mechanical properties of polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号