首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   96篇
  国内免费   49篇
电工技术   27篇
综合类   36篇
化学工业   39篇
金属工艺   17篇
机械仪表   131篇
建筑科学   8篇
矿业工程   7篇
能源动力   25篇
轻工业   7篇
水利工程   1篇
石油天然气   9篇
武器工业   15篇
无线电   134篇
一般工业技术   119篇
冶金工业   1篇
原子能技术   27篇
自动化技术   118篇
  2024年   5篇
  2023年   29篇
  2022年   14篇
  2021年   22篇
  2020年   21篇
  2019年   26篇
  2018年   30篇
  2017年   32篇
  2016年   37篇
  2015年   51篇
  2014年   45篇
  2013年   44篇
  2012年   41篇
  2011年   50篇
  2010年   29篇
  2009年   32篇
  2008年   44篇
  2007年   33篇
  2006年   39篇
  2005年   30篇
  2004年   11篇
  2003年   15篇
  2002年   8篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有721条查询结果,搜索用时 15 毫秒
81.
一种球面冗余并联机器人机构设计的基础研究   总被引:1,自引:0,他引:1  
提出了一种基于球面机构的二自由度驱动冗余并联机器人。建立了该球面并联机器人机构的约束方程,进行了运动学分析;建立了该球面并联机器人的设计空间,探讨了其机构的工作空间面积性能指标与杆件尺寸之间的关系,并绘制了相应的性能图谱。这些图谱是该并联机器人机构设计的重要参考依据。  相似文献   
82.
Dynamic microcapsules are reported that exhibit shell membranes with fast and reversible changes in permeability in response to external stimuli. A hydrophobic anhydride monomer is employed in the thiol–ene polymerization as a disguised precursor for the acid‐containing shells; this enables the direct encapsulation of aqueous cargo in the liquid core using microfluidic fabrication of water‐in‐oil‐in‐water double emulsion drops. The poly(anhydride) shells hydrolyze in their aqueous environment without further chemical treatment, yielding cross‐linked poly(acid) microcapsules that exhibit trigger‐responsive and reversible property changes. The microcapsule shell can actively be switched numerous times between impermeable and permeable due to the exceptional mechanical properties of the thiol–ene network that prevent rupture or failure of the membrane, allowing it to withstand the mechanical stresses imposed on the capsule during the dynamic property changes. The permeability and molecular weight cutoff of the microcapsules can dynamically be controlled with triggers such as pH and ionic environment. The reversibly triggered changes in permeability of the shell exhibit a response time of seconds, enabling actively adjustable release profiles, as well as on‐demand capture, trapping, and release of cargo molecules with molecular selectivity and fast on‐off rates.  相似文献   
83.
84.
85.
Many active materials used in shape-morphing respond to an external stimulus by stretching or contracting along a director field. The programming of such actuators remains complex because of the single degree of freedom (the orientation) in local actuation. Here, texturing this field in zigzag patterns is shown to provide an extended family of biaxial active stretches out of an otherwise single uniaxial active deformation, opening a larger parameter space. By further modulating the zigzag patterns at the larger scale of the structure, its deployed shape can be controlled. This notion of texturing over hierarchical length scales follows geometrical principles, and is robust against changes in size and materials. The robustness of the approach is demonstrated by considering three different responsive materials: inextensible flat fabrics, channel-bearing elastomer (respectively, contracting and expanding perpendicularly to the director field when actuated pneumatically), and 3D-printed thermoplastic (composed of extruded filaments that contract when heated). It is shown that large-scale shape-morphing structures can be generated and that their geometry can be controlled with high accuracy.  相似文献   
86.
Materials capable of actuation through remote stimuli are crucial for untethering soft robotic systems from hardware for powering and control. Fluidic actuation is one of the most applied and versatile actuation strategies in soft robotics. Here, the first macroscale soft fluidic actuator is derived that operates remotely powered and controlled by light through a plasmonically induced phase transition in an elastomeric constraint. A multiphase assembly of a liquid layer of concentrated gold nanoparticles in a silicone or styrene–ethylene–butylene–styrene elastic pocket forms the actuator. Upon laser excitation, the nanoparticles convert light of specific wavelength into heat and initiate a liquid‐to‐gas phase transition. The related pressure increase inflates the elastomers in response to laser wavelength, intensity, direction, and on–off pulses. During laser‐off periods, heating halts and condensation of the gas phase renders the actuation reversible. The versatile multiphase materials actuate—like soft “steam engines”—a variety of soft robotic structures (soft valve, pnue‐net structure, crawling robot, pump) and are capable of operating in different environments (air, water, biological tissue) in a single configuration. Tailored toward the near‐infrared window of biological tissue, the structures actuate also through animal tissue for potential medical soft robotic applications.  相似文献   
87.
This article presents a frequency reconfigurable antenna with loading fluidic switches. The liquid reconfigurable antenna consists of an H‐typed slot antenna and four groups of fluidic switches. The designed H‐typed slot is placed on the backside of the antenna and excited by a straight 50 Ω microstrip line on the front side. As most of the electromagnetic energy is radiated through the slot, the surface currents on the proposed antenna are concentrated on the four branches of the H‐typed slot. Four fluidic switches fabricated by using 3D printing technology are located at the ends of the four branches of the H‐typed slot, aiming to adjust resonant frequency of the antenna. Due to the symmetry of antenna structure, five states can be obtained by loading and unloading liquid distilled water in the fluidic switches, which provides five switching frequencies cover from 3.38 to 3.83 GHz. Advantages such as fast switching speed, low cost, easy fabrication, and high radiation efficiency are achieved by the proposed reconfigurable antenna, making it a good candidate for multifunctional antenna application.  相似文献   
88.
Direct light-to-work conversion enables remote actuation through a non-contact manner, among which the photothermal Marangoni effect is significant for developing light-driven robots because of the diversity of applicable photothermal materials and light sources, as well as the high energy conversion efficiency. However, the lack of nanotechnologies that enable flexible integration of advanced photothermal materials with actuators of complex configurations significantly restricts their practical applications. In this paper, laser-induced graphene (LIG) tape is reported as stick-on photothermal labels for developing light-driven actuators based on the Marangoni effect. With the help of direct laser writing technology, graphene patterns with superior photothermal properties are prepared on the PI tape. The patterned LIG tape can be stuck on any desired objects and generates an asymmetric photothermal field under light irradiation, forming a photothermal Marangoni actuator. Additionally, the PI tape with LIG patterns can be folded into 3D origami actuators that permit photothermal Marangoni actuation including both translation and rotation. The graphene-based photothermal Marangoni actuators feature biocompatibility, which is confirmed by MDA-MB-231 cells proliferation experiments. Owing to the excellent photothermal property of LIG patterns, the as-produced photothermal actuators can be manipulated by a variety of light sources, holding great promise for developing light-driven soft robots.  相似文献   
89.
本数据采集系统是基于单片机AT89S52为控制核心的数据采集系统,该数据采集系统具有电路简单、功耗低、可靠性高等优点,能实现对多路模拟通道信号的数据采集与处理,并将采集的数据送LED显示器显示等功能.另外,该系统可作信号发生器使用产生频率为1kHz的方波测试信号.  相似文献   
90.
安全稳定控制系统全程控制时间及其构成   总被引:1,自引:0,他引:1  
安全稳定控制系统(简称"稳控系统")在故障发生后按照事先设计的逻辑和时间可靠动作是电网严重故障下安全稳定运行的重要保障。针对当前稳控系统"整组动作时间"难以反映从故障发生至控制措施执行到位完整时段进而难以准确用于指导系统仿真和分析的问题,详细分析了稳控系统从故障检测识别到控制动作出口所经历的过程、涉及的环节以及每个环节所需延时,为稳控系统时间性能的改进提供了合理依据,提出了新的稳控系统"全程控制时间"的概念。随着设防故障复杂化及稳控系统大型化,稳控系统的全程控制时间难以控制在传统的保守计时300ms内,建议从全程控制时间的完整时段挖掘潜力,从电网安全运行角度提升产品的时间性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号