首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6454篇
  免费   510篇
  国内免费   173篇
电工技术   597篇
综合类   241篇
化学工业   2076篇
金属工艺   360篇
机械仪表   64篇
建筑科学   20篇
矿业工程   72篇
能源动力   1330篇
轻工业   695篇
水利工程   8篇
石油天然气   35篇
武器工业   19篇
无线电   414篇
一般工业技术   826篇
冶金工业   317篇
原子能技术   16篇
自动化技术   47篇
  2024年   38篇
  2023年   190篇
  2022年   179篇
  2021年   270篇
  2020年   264篇
  2019年   236篇
  2018年   198篇
  2017年   271篇
  2016年   198篇
  2015年   173篇
  2014年   285篇
  2013年   302篇
  2012年   354篇
  2011年   520篇
  2010年   429篇
  2009年   382篇
  2008年   368篇
  2007年   439篇
  2006年   331篇
  2005年   240篇
  2004年   243篇
  2003年   188篇
  2002年   190篇
  2001年   130篇
  2000年   134篇
  1999年   113篇
  1998年   91篇
  1997年   68篇
  1996年   64篇
  1995年   54篇
  1994年   39篇
  1993年   28篇
  1992年   23篇
  1991年   15篇
  1990年   11篇
  1989年   17篇
  1988年   24篇
  1987年   9篇
  1986年   4篇
  1985年   11篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1951年   1篇
排序方式: 共有7137条查询结果,搜索用时 0 毫秒
51.
52.
The transparent and flexible solid polymer electrolytes (SPEs) were fabricated from polyacrylonitrile‐polyethylene oxide (PAN‐PEO) copolymer which was synthesized by methacrylate‐headed PEO macromonomer and acrylonitrile. The formation of copolymer is confirmed by Fourier‐transform infrared spectroscopy (FTIR) measurements. The ionic conductivity was measured by alternating current (AC) impedance spectroscopy. Ionic conductivity of PAN‐PEO‐LiClO4 complexes was investigated with various salt concentration, temperatures and molecular weight of PEO (Mn). And the maximum ionic conductivity at room temperature was measured to be 3.54 × 10?4 S/cm with an [Li+]/[EO] mole ratio of about 0.1. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 461–464, 2006  相似文献   
53.
An admixture of commercial liquid electrolyte (LB302, 1 M solution of LiPF6 in 1:1 EC/DEC) and methyl methacrylate (MMA) was enclosed in CR2032 cells. The assembled cells were then -ray-irradiated using configurations of half cells and full cells. Through this in situ irradiation polymerization process, we obtained rechargeable lithium ion cells with poly(methyl methacrylate) (PMMA) based gel polymer electrolytes (GPE). Galvanostatic cycling, AC impedance spectroscopy, and cyclic voltammetry were employed to investigate the electrochemical properties of the cells and the gel polymer electrolyte. This PMMA-based gel polymer electrolyte was found to exhibit a high ionic conductivity (at least 10–3 S cm–1) at room temperature. Due to a significant increase in the charge transfer resistance between the GPE and the cathode, the cell impedance of a PMMA-based lithium ion cell is greater than that of a liquid-electrolyte-based cell. The discharge capacity of a LiNi0.8Co0.2O2/GPE/graphite is approximately 145 mAh g–1 for the first cycle and decreases to123 mAh g–1 after 20 cycles. In addition, a large initial cell impedance (LICI) was observed in the irradiated positive half cell. In this paper, we propose a possible mechanism related to the detachment of the PMMA layer from the lithium electrode. This detachment of the PMMA layer from the lithium electrode has not been explicitly discussed previously.  相似文献   
54.
Vanadium doped La9.33Si6−xVxO26+0.5x (x = 0.5, 1.0, 1.5) (LSVO) electrolyte powder was prepared by combustion method at 600°C for 5-7 min. The powder was sintered at 1500°C for 3 hours to prepare LSVO ceramics. XPS, IR, XRD, and EIS analysis show that V5+ doping replaces Si4+ in [SiO4] to form [Si(V)O4] tetrahedron. With the increase in x, the lattice volume increase. When x = 2.0, the LaVO4 phase was formed, indicating that the limit doping amount of V5+ replacing Si4+ is x ≤ 1.5. The conductivity of LSVO increases significantly with the increase in x (x ≤ 1.0), which attributed to the defect reaction caused by V5+ doping. The addition of the interstitial oxygen Oi* in 63 channels and the increase of lattice volume leads to increased conductivity. When x = 1.0, the highest conductivity is 1.46 × 10−2 S·cm−1 (800°C). The doping enhancement conductivity mechanism is the Interstitial oxygen defect-Lattice volume composite enhancement mechanism.  相似文献   
55.
A new basic electrolyte with two cationic plating additives,polydiaminourea and polyaminosulfone,was investigated for the electrochemical deposition of the bismuth telluride film on a nickel-plated copper foil.Tellurium starts to deposit at a higher potential(-0.35 V) than bismuth(-0.5 V) in this electrolyte.The tellurium-to-bismuth ratio increases while the deposition potential declines from-1 to-1.25 V, indicating a kinetically quicker bismuth deposition at higher potentials.The as-deposited film featu...  相似文献   
56.
The catalysts of air electrode were prepared by sintering the active carbon loaded with manganese nitrate and potassium permanganate at 360 °C The air electrode was made up of a catalyst layer, a waterproof and gas-permeable layer, a current collecting substrate and a second waterproof and gas-permeable layer. The cell was assembled by the air electrode, pure magnesium anode and 10% NaCl solution used as electrolyte. The microstructures of air electrodes before and after discharging were characterized by SEM. The electrochemical behaviors of the air electrodes were determined by means of polarization curves, volt-ampere curves and constant current discharge curves. The polarization voltage of air electrode is—173 mV (vs SCE) at the current density of 50 mA/cm2. The air electrodes exhibits good activity and stability in neutral electrolyte. The magnesium-air cell could work at 5 W for more than 7 h.  相似文献   
57.
通过引入表达离子缔合或离子间的短程静电作用项,提高了局部组成模型关联单一电解质水溶液体系热力学性质的精度,并通过建立新的计算多元混合体系作用参数的方法,将其推广应用到多离子电解质溶液体系。在此基础上,预测了Na+//Cl-,SO2-3,H2O、K+//Cl-,SO2-4,NO-4,NO-3,H2O、K+,Na+//Cl-,SO2-4,H2O、K+,Na+//Cl-,NO-3,H2O3,H2O、K+,Na+//SO2-4,NO-3,H2O5个四元体系及K+,Na+//Cl-,SO2-4,NO-五元体系的溶解度,模型参数均通过上述体系所包含的二元、三元体系的溶解度数据获得,计算结果满意。  相似文献   
58.
A novel side-chain-sulfonated aromatic diamine of bis[4-(4-aminophenoxy)-2-(3-sulfobenzoyl)]phenyl sulfone (BAPSBPS) was synthesized. Sulfonated copolyimides were synthesized by random and sequenced block copolymerization of 1,4,5,8-naphthalene tetracarboxylic dianhydride, BAPSBPS and nonsulfonated diamine. They displayed good solubility in common aprotic solvents and high desulfonation temperature of 350 °C, suggesting the high stability of sulfonic acid groups. The reduced viscosity was in the range of 0.4-1.8 dl/g at 0.5 g/dl and 35 °C. Flexible and tough membranes with reasonably high mechanical strength were prepared. They showed anisotropic membrane swelling with larger swelling in thickness than in plane. They displayed reasonably high proton conductivity (σ), taking their lower ion exchanging capacity (IEC) into account. For example, the membrane with IEC of 1.54 mequiv/g showed σ values of 81 and 11 mS/cm in water and 70% RH, respectively, at 60 °C.  相似文献   
59.
Highly ion-conductive solid polymer electrolyte (SPE) based on polyethylene (PE) non-woven matrix is prepared by filling poly(ethylene glycol) (PEG)-based crosslinked electrolyte inside the pores of the non-woven matrix. The PE non-woven matrix not only shows good mechanical strength for SPE to be a free-standing film, but also has very porous structure for high ion conductivity. The ion conductivity of SPE based on PE non-woven matrix can be enhanced by adding sufficient non-volatile plasticizer such as poly(ethylene glycol) dimethyl ether (PEGDME) into ion conduction phase without sacrificing mechanical strength. SPE with 20 wt.% crosslinking agent and 80 wt.% non-volatile plasticizer shows 3.1 × 10−4 S cm−1 at room temperature (20 °C), to our knowledge, which is the highest level for SPEs. It is also electrochemically stable up to 5.2 V and has high transference number about 0.52 due to the introduction of anion receptor as an additive. The interfacial resistance between Li electrode and SPE is low enough to perform charge/discharge test of unit cell consisting of LiCoO2/SPE/Li at room temperature. The discharge capacity of the unit cell shows 87% of theoretical value with 86% Coulombic efficiency.  相似文献   
60.
Incorporation of silica particles through a sol-gel process into the anode-catalyst layer with a sol-gel modified Nafion-silica composite membrane renders easy retention of back-diffused water from the cathode to anode through the composite membrane electrolyte, increases the catalyst-layer wettability and improves the performance of the Polymer Electrolyte Fuel Cell (PEFC) while operating under relative humidity (RH) values ranging between 18% and 100% with gaseous hydrogen and oxygen reactants at atmospheric pressure. A peak power density of 300 mW cm−2 is achieved at a load current-density value of 1200 mA cm−2 for the PEFC employing a sol-gel modified Nafion-silica composite membrane and operating at 18% RH. Under similar operating conditions, the PEFC with a Membrane Electrode Assembly (MEA) comprising Nafion-silica composite membrane with silica in the anode-catalyst layer delivers a peak power density of 375 mW cm−2. By comparison, the PEFC employing commercial Nafion membrane fails to deliver satisfactory performance at 18% RH due to the limited availability of water at its anode, acerbated electro-osmotic drag of water from anode to cathode and insufficient water back diffusion from cathode to anode causing the MEA to dehydrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号