首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109484篇
  免费   10121篇
  国内免费   7162篇
电工技术   3848篇
技术理论   2篇
综合类   6550篇
化学工业   35223篇
金属工艺   10913篇
机械仪表   2874篇
建筑科学   2213篇
矿业工程   1757篇
能源动力   4756篇
轻工业   7551篇
水利工程   903篇
石油天然气   4460篇
武器工业   672篇
无线电   10505篇
一般工业技术   16727篇
冶金工业   5074篇
原子能技术   1407篇
自动化技术   11332篇
  2025年   18篇
  2024年   1419篇
  2023年   2402篇
  2022年   3909篇
  2021年   4542篇
  2020年   3581篇
  2019年   3124篇
  2018年   2838篇
  2017年   3361篇
  2016年   3636篇
  2015年   3601篇
  2014年   5057篇
  2013年   6012篇
  2012年   6882篇
  2011年   8692篇
  2010年   6659篇
  2009年   7694篇
  2008年   6629篇
  2007年   7708篇
  2006年   6967篇
  2005年   5473篇
  2004年   4617篇
  2003年   3948篇
  2002年   3207篇
  2001年   2528篇
  2000年   2257篇
  1999年   1762篇
  1998年   1410篇
  1997年   1120篇
  1996年   1046篇
  1995年   876篇
  1994年   824篇
  1993年   620篇
  1992年   488篇
  1991年   405篇
  1990年   352篇
  1989年   283篇
  1988年   160篇
  1987年   108篇
  1986年   105篇
  1985年   76篇
  1984年   61篇
  1983年   36篇
  1982年   52篇
  1981年   49篇
  1980年   44篇
  1979年   29篇
  1977年   15篇
  1975年   15篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Colorectal cancer is a serious threat to human health. Poor prognosis and frequently reported drug resistance urges research into novel biomarkers and mechanisms to aid in the understanding of the development and progression of colorectal cancer and to optimise therapeutic strategies. In the current study, we investigated the roles of a putative tumour suppressor, EPLIN, in colorectal cancer. Our clinical colorectal cancer cohort and online databases revealed a downregulation of EPLIN in colorectal cancer tissues compared with normal tissues. The reduced expression of EPLIN was associated with poor clinical outcomes of patients. In vitro cellular function assays showed that EPLIN elicited an inhibitory effect on cellular growth, adhesion, migration and invasion. Utilising a protein microarray on protein samples from normal and tumour patient tissues suggested HSP60, Her2 and other signalling events were novel potential interacting partners of EPLIN. It was further revealed that EPLIN and HSP60 were negative regulators of Her2 in colorectal cancer cells. The clinical cohort also demonstrated that expression of HSP60 and Her2 affected clinical outcomes, but most interestingly the combination of EPLIN, HSP60 and Her2 was able to identify patients with the most unfavourable clinical outcome by independently predicting patient overall survival and disease free survival. Furthermore, EPLIN and HSP60 exhibited potential to regulate cellular response to chemotherapeutic and EGFR/Her2 targeted therapeutic agents. In conclusion, EPLIN is an important prognostic factor for patients with colon cancer and reduced EPLIN in CRC contributes to aggressive traits of CRC cells and their responses to chemotherapeutic drugs. Collectively, EPLIN is a pivotal factor for the development and progression of colorectal cancer and has important clinical and therapeutic values in this cancer type.  相似文献   
62.
Hypoglycemia, as a complication of type 2 diabetes (T2D), causes increased morbidity and mortality but the physiological response underlying hypoglycemia has not been fully elucidated. Small noncoding microRNA (miRNA) have multiple downstream biological effects. This pilot exploratory study was undertaken to determine if induced miRNA changes would persist and contribute to effects seen 24 h post-hypoglycemia. A parallel, prospective study design was employed, involving T2D (n = 23) and control (n = 23) subjects. The subjects underwent insulin-induced hypoglycemia (2 mmol/L; 36 mg/dL); blood samples were drawn at baseline, upon the induction of hypoglycemia, and 4 h and 24 h post-hypoglycemia, with a quantitative polymerase chain reaction analysis of miRNA undertaken. The baseline miRNAs did not differ. In the controls, 15 miRNAs were downregulated and one was upregulated (FDR < 0.05) from the induction of hypoglycemia to 4 h later while, in T2D, only four miRNAs were altered (downregulated), and these were common to both cohorts (miR-191-5p; miR-143-3p; let-7b-5p; let-7g-5p), correlated with elevated glucagon levels, and all were associated with energy balance. From the induction of hypoglycemia to 24 h, 14 miRNAs were downregulated and 5 were upregulated (FDR < 0.05) in the controls; 7 miRNAs were downregulated and 7 upregulated (FDR < 0.05) in T2D; a total of 6 miRNAs were common between cohorts, 5 were downregulated (miR-93-5p, let-7b-5p, miR-191-5p, miR-185-5p, and miR-652-3p), and 1 was upregulated (miR-369-3p). An ingenuity pathway analysis indicated that many of the altered miRNAs were associated with metabolic and coagulation pathways; however, of the inflammatory proteins expressed, only miR-143-3p at 24 h correlated positively with tumor necrosis factor-α (TNFa; p < 0.05 and r = 0.46) and negatively with toll-like receptor-4 (TLR4; p < 0.05 and r = 0.43). The MiRNA levels altered by hypoglycemia reflected changes in counter-regulatory glucagon and differed between cohorts, and their expression at 24 h suggests miRNAs may potentiate and prolong the physiological response. Trial registration: ClinicalTrials.gov NCT03102801.  相似文献   
63.
A leaf structure with high porosity is beneficial for lateral CO2 diffusion inside the leaves. However, the leaf structure of maize is compact, and it has long been considered that lateral CO2 diffusion is restricted. Moreover, lateral CO2 diffusion is closely related to CO2 pressure differences (ΔCO2). Therefore, we speculated that enlarging the ΔCO2 between the adjacent regions inside maize leaves may result in lateral diffusion when the diffusion resistance is kept constant. Thus, the leaf structure and gas exchange of maize (C4), cotton (C3), and other species were explored. The results showed that maize and sorghum leaves had a lower mesophyll porosity than cotton and cucumber leaves. Similar to cotton, the local photosynthetic induction resulted in an increase in the ΔCO2 between the local illuminated and the adjacent unilluminated regions, which significantly reduced the respiration rate of the adjacent unilluminated region. Further analysis showed that when the adjacent region in the maize leaves was maintained under a steady high light, the photosynthesis induction in the local regions not only gradually reduced the ΔCO2 between them but also progressively increased the steady photosynthetic rate in the adjacent region. Under field conditions, the ΔCO2, respiration, and photosynthetic rate of the adjacent region were also markedly changed by fluctuating light in local regions in the maize leaves. Consequently, we proposed that enlarging the ΔCO2 between the adjacent regions inside the maize leaves results in the lateral CO2 diffusion and supports photosynthesis in adjacent regions to a certain extent under fluctuating light.  相似文献   
64.
Caveolin-2 is a protein suitable for the study of interactions of caveolins with other proteins and lipids present in caveolar lipid rafts. Caveolin-2 has a lower tendency to associate with high molecular weight oligomers than caveolin-1, facilitating the study of its structural modulation upon association with other proteins or lipids. In this paper, we have successfully expressed and purified recombinant human caveolin-2 using E. coli. The structural changes of caveolin-2 upon interaction with a lipid bilayer of liposomes were characterized using bioinformatic prediction models, circular dichroism, differential scanning calorimetry, and fluorescence techniques. Our data support that caveolin-2 binds and alters cholesterol-rich domains in the membranes through a CARC domain, a type of cholesterol-interacting domain in its sequence. The far UV-CD spectra support that the purified protein keeps its folding properties but undergoes a change in its secondary structure in the presence of lipids that correlates with the acquisition of a more stable conformation, as shown by differential scanning calorimetry experiments. Fluorescence experiments using egg yolk lecithin large unilamellar vesicles loaded with 1,6-diphenylhexatriene confirmed that caveolin-2 adsorbs to the membrane but only penetrates the core of the phospholipid bilayer if vesicles are supplemented with 30% of cholesterol. Our study sheds light on the caveolin-2 interaction with lipids. In addition, we propose that purified recombinant caveolin-2 can provide a new tool to study protein–lipid interactions within caveolae.  相似文献   
65.
Aroma is an important economic trait of vegetable soybeans, which greatly influences their market value. The 2-acetyl-1-pyrroline (2AP) is considered as an important substance affecting the aroma of plants. Although the 2AP synthesis pathway has been resolved, the differences of the 2AP synthesis in the aromatic and non-aromatic vegetable soybeans are unknown. In this study, a broad targeted metabolome analysis including measurement of metabolites levels and gene expression levels was performed to reveal pathways of aroma formation in the two developmental stages of vegetable soybean grains [35 (S5) and 40 (S6) days after anthesis] of the ‘Zhexian No. 8’ (ZX8, non-aromatic) and ZK1754 (aromatic). The results showed that the differentially accumulated metabolites (DAMs) of the two varieties can be classified into nine main categories including flavonoids, lipids, amino acids and derivatives, saccharides and alcohols, organic acids, nucleotides and derivatives, phenolic acids, alkaloids and vitamin, which mainly contributed to their phenotypic differences. Furthermore, in combination with the 2AP synthesis pathway, the differences of amino acids and derivatives were mainly involved in the 2AP synthesis. Furthermore, 2AP precursors’ analysis revealed that the accumulation of 2AP mainly occurred from 1-pyrroline-5-carboxylate (P5C), not 4-aminobutyraldehyde (GABald). The quantitative RT-PCR showed that the associated synthetic genes were 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), ∆1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PRODH) and pyrroline-5-carboxylate reductase (P5CR), which further verified the synthetic pathway of 2AP. Furthermore, the betaine aldehyde dehydrogenase 2 (GmBADH2) mutant was not only vital for the occurrence of 2AP, but also for the synthesis of 4-aminobutyric acid (GABA) in vegetable soybean. Therefore, the differences of 2AP accumulation in aromatic and non-aromatic vegetable soybeans have been revealed, and it also provides an important theoretical basis for aromatic vegetable soybean breeding.  相似文献   
66.
Platelets (PLTs) are anucleate and considered incapable of nuclear functions. Contrastingly, nuclear proteins were detected in human PLTs. For most of these proteins, it is unclear if nuclear or alternatively assigned functions are performed, a question we wanted to address for nuclear assembly protein 1 like 1 (NAP1L1). Using a wide array of molecular methods, including RNAseq, co-IP, overexpression and functional assays, we explored expression pattern and functionality of NAP1L1 in PLTs, and CD34+-derived megakaryocytes (MKs). NAP1L1 is expressed in PLTs and MKs. Co-IP experiments revealed that dihydrolipolylysine-residue acetyltransferase (DLAT encoded protein PDC-E2, ODP2) dynamically interacts with NAP1L1. PDC-E2 is part of the mitochondrial pyruvate-dehydrogenase (PDH) multi-enzyme complex, playing a crucial role in maintaining cellular respiration, and promoting ATP-synthesis via the respiratory chain. Since altered mitochondrial function is a hallmark of infectious syndromes, we analyzed PDH activity in PLTs from septic patients demonstrating increased activity, paralleling NAP1L1 expression levels. MKs PDH activity decreased following an LPS-challenge. Furthermore, overexpression of NAP1L1 significantly altered the ability of MKs to form proplatelet extensions, diminishing thrombopoiesis. These results indicate that NAP1L1 performs in other than nucleosome-assembly functions in PTLs and MKs, binding a key mitochondrial protein as a potential chaperone, and gatekeeper, influencing PDH activity and thrombopoiesis.  相似文献   
67.
68.
SARS-CoV-2 as a zoonotic virus has significantly affected daily life and social behavior since its outbreak in late 2019. The concerns over its transmission through different media directly or indirectly have evoked great attention about the survival of SARS-CoV-2 virions in the environment and its potential infection of other animals. To evaluate the risk of infection by SARS-CoV-2 and to counteract the COVID-19 disease, extensive studies have been performed to understand SARS-CoV-2 biogenesis and its pathogenesis. This review mainly focuses on the molecular architecture of SARS-CoV-2, its potential for infecting marine animals, and the prospect of drug discovery using marine natural products to combat SARS-CoV-2. The main purposes of this review are to piece together progress in SARS-CoV-2 functional genomic studies and antiviral drug development, and to raise our awareness of marine animal safety on exposure to SARS-CoV-2.  相似文献   
69.
Carbon-based carbides have attracted tremendous attention for electromagnetic energy attenuation due to their adjustable dielectric properties, oxidation resistance, and good chemical stability. Herein, we reasonably regulate the growth of dopamine hydrochloride on the surface of the Mo-glycerate (Mo-GL) microsphere and then transform the resultant Mo-polydopamine (Mo-PD) microsphere into a dual-shell Mo2C/C (DS-Mo2C/C) microsphere in a high-temperature pyrolysis process under an inert atmosphere. It is found that the pyrolysis temperature plays an important role in the graphitization degree of the carbon matrix and internal architecture. The fabrication of a dual-shell structure can be propitious to the optimization of impedance matching, and the introduction of Mo2C nanoparticles also prompts the accumulation of polarization loss. When the pyrolysis temperature reaches 800 °C, the optimized composite of DS-Mo2C/C-800 exhibits good EM absorption performance in the frequency range of 2.0–18.0 GHz. DS-Mo2C/C-800′s qualified bandwidth can reach 4.4 GHz at a matching thickness of 1.5 mm, and the integrated qualified bandwidth (QBW) even exceeds 14.5 GHz with a thickness range of 1.5–5.0 mm. The positive effects of the dual-shell structure and Mo2C nanoparticles on EM energy attenuation may render the DS-Mo2C/C microsphere as a promising candidate for lightweight and broad bandwidth EM absorption materials in the future.  相似文献   
70.
The survival of patients with glioblastoma (GBM) is poor. The main cause is the presence of glioma stem cells (GSCs), exceptionally resistant to temozolomide (TMZ) treatment. This last may be related to the heterogeneous expression of ion channels, among them TRPML2. Its mRNA expression was evaluated in two different neural stem cell (NS/PC) lines and sixteen GBM stem-like cells by qRT-PCR. The response to TMZ was evaluated in undifferentiated or differentiated GSCs, and in TRPML2-induced or silenced GSCs. The relationship between TRPML2 expression and responsiveness to TMZ treatment was evaluated by MTT assay showing that increased TRPML2 mRNA levels are associated with resistance to TMZ. This research was deepened by qRT-PCR and western blot analysis. PI3K/AKT and JAK/STAT pathways as well as ABC and SLC drug transporters were involved. Finally, the relationship between TRPML2 expression and overall survival (OS) and progression-free survival (PFS) in patient-derived GSCs was evaluated by Kaplan–Meier analysis. The expression of TRPML2 mRNA correlates with worse OS and PFS in GBM patients. Thus, the expression of TRPML2 in GSCs influences the responsiveness to TMZ in vitro and affects OS and PFS in GBM patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号