首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   713篇
  免费   73篇
  国内免费   51篇
电工技术   8篇
综合类   31篇
化学工业   191篇
金属工艺   155篇
机械仪表   99篇
建筑科学   26篇
矿业工程   10篇
能源动力   4篇
轻工业   10篇
石油天然气   5篇
武器工业   4篇
无线电   22篇
一般工业技术   235篇
冶金工业   19篇
原子能技术   6篇
自动化技术   12篇
  2024年   3篇
  2023年   22篇
  2022年   15篇
  2021年   27篇
  2020年   29篇
  2019年   28篇
  2018年   26篇
  2017年   35篇
  2016年   17篇
  2015年   24篇
  2014年   24篇
  2013年   48篇
  2012年   56篇
  2011年   43篇
  2010年   37篇
  2009年   40篇
  2008年   32篇
  2007年   33篇
  2006年   42篇
  2005年   33篇
  2004年   29篇
  2003年   28篇
  2002年   28篇
  2001年   24篇
  2000年   15篇
  1999年   8篇
  1998年   14篇
  1997年   8篇
  1996年   5篇
  1995年   10篇
  1994年   5篇
  1993年   5篇
  1992年   9篇
  1991年   13篇
  1990年   14篇
  1989年   3篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有837条查询结果,搜索用时 15 毫秒
31.
A visualizing technique for indentation damage of ceramics was developed. Plasma etching was used to enhance the view of cracks and the subsurface microcracking crush zone following Knoop indentation of hot pressed Si3N4. The microcracking zone was readily identified from the surface view of the indented surface as a grain-falling-off region (GFOR), defined as a region in which grains were removed by preferential etching using CF4 gas, followed by ultrasonic cleaning. A fissure-like opening corresponding to the indentation cracks was also observed. It is inferred that the formation of the GFOR region and the fissure-like opening were caused by the etching/cleaning treatment. Meanwhile, the etching on a section which included diagonals of the impression provided a section view of the microcracking zone.  相似文献   
32.
采用超音速火焰喷涂制备超致密NiTi合金涂层,通过后续热处理获得优化相变结构,并通过压痕法分析涂层的形状记忆效应。光学显微镜及扫描电镜对NiTi合金涂层微观结构表征显示,喷涂制备态涂层由内部岛状-链状界面叠片组成,涂层致密孔隙率约为0.82%。X射线衍射分析显示,NiTi涂层制备态为全奥氏体,经时效处理析出Ni4Ti3相。压痕法分析表明,在制备态及时效态涂层中均获得了一定的单程及双程形状记忆效应。X射线物相分析及差示扫描量热仪对比分析揭示,时效析出的第二相粒子显著增加形状记忆效应。  相似文献   
33.
34.
Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test (IIT) in combination with acoustic emission (AE) measurement. Critical load and AE energy were employed to calculate interface fracture toughness. The critical point at which crack appears at the interface was determined by the IIT. AE signals produced during total indentation test not only are used to investigate the interface cracking behavior by Fast Fourier Transform (FFT) and wavelet transforms but also supply the mechanical information. The result shows that the AE signals associated with coating plastic deformation during indentation are of a more continuous type with a lower characteristic frequency content (30-60 kHz), whereas the instantaneous relaxation associated with interface crack initiation produces burst type AE signals with a characteristic frequency in the range 70-200 kHz. The AE signals energy is concentrated on different scales for the coating plastic deformation, interface crack initiation and interface crack propagation. Interface fracture toughness calculated by AE energy was 1.19 MPam1/2 close to 1.58 MPam1/2 calculated by critical load. It indicates that the acoustic emission energy is suitable to reflect the interface fracture toughness.  相似文献   
35.
Aluminoborate glasses have recently been found to feature high resistance to crack initiation during indentation due to a highly flexible network structure. In cesium aluminoborate glasses, it has been found that the use of a simple post-treatment, namely aging in a humid atmosphere, can further improve this resistance. To better understand the mechanical properties of this glass family upon humid aging, we here study the effect of aging conditions on the structure and mechanical properties of Li,K,Cs-aluminoborate glasses. As expected, we find that higher humidity and longer aging time cause more pronounced permeation of atmospheric water into the glasses. Due to their denser structure and stronger modifier-oxygen bonds, the humid aging has a relatively smaller effect on the mechanical properties of Li- and K-containing glasses relative to Cs-containing glasses, with the latter achieving an ultrahigh crack resistance. We find that the humid aging leads to the formation of a hydration layer in the Cs-aluminoborate glass surface, with a thickness of around 26 μm upon aging at 23 °C with 40% relative humidity for 7 days. Moreover, a remarkable indentation behavior, that is, the observation of μm-sized shear bands inside the imprint of the Cs-glass upon aging at 60% relative humidity is reported. Taken as a whole, the work provides guidelines for how to control the humid aging rate as a function of relative humidity and temperature to form a hydration layer and thus achieve improved crack resistance in such glasses.  相似文献   
36.
A novel potassium phospho-aluminosilicate composition is described that can be strengthened by water vapor to achieve deep compressive stress (CS) profiles. Water vapor treatment at (A) 85°C and 85% relative humidity for 40 days results in a CS of 389 ± 20 MPa and a compressive depth of layer (DOL) of 18 ± 2 μm. When treated at (B) 160°C and 0.1 MPa for 7 days, a CS of 245 ± 20 MPa and a DOL of 40 ± 2 μm is achieved. Glasses with hydration-induced stress profiles can provide high retained strength following flaw introduction compared with ion-exchanged soda-lime silicate glass. Sample treatment B also has an exemplary Vickers indentation cracking threshold value greater than 20 kgf. The hydration profile determined by secondary ion mass spectrometry (SIMS) is shown to closely match the stress profile for these samples. SIMS analysis also shows that the depth of water enrichment correlates well with the depletion depth of phosphorus. The high tendency towards water-induced strengthening for this new type of glass even enables self-strengthening by the generation of a near-surface CS profile following exposure to ambient conditions.  相似文献   
37.
In this study, the rubber forming process is used to fabricate a micro‐channel titanium plate for a PEM fuel cell. The micro‐channel plate is fabricated using a 200 ton hydraulic press, and various parameters (punch speed, press pressure, rubber thickness, rubber hardness) are investigated in order to evaluate the formability. TiN films are deposited by reactive DC magnetron sputtering (DCMS) with an electromagnetic field system (EMFS). For the uncoated titanium and TiN‐coated titanium substrates, the hardness, surface roughness, and corrosion resistance are estimated by nano‐indentation and electrochemical methods, respectively. The improved corrosion resistance of the TiN films can be attributed to the densification of the film caused by enhancement of nitrification with increasing high reactive nitrogen radicals. The uncoated titanium and TiN‐coated titanium bipolar plates are combined with a unit cell for a performance test, and respective current densities of 0.396 and 0.888 A cm−2 at 0.6 V are obtained.  相似文献   
38.
Lithium aluminoborate glasses have recently been found to feature high resistance to crack initiation during indentation, but suffer from relatively low hardness and chemical durability. To further understand the mechanical properties of this glass family and their correlation with the network structure, we here study the effect of adding SiO2 to a 25Li2O–20Al2O3–55B2O3 glass on the structure and mechanical properties. Addition of silica increases the average network rigidity, but meanwhile its open tetrahedral structure decreases the atomic packing density. Consequently, we only observe a minor increase in hardness and glass transition temperature, and a decrease in Poisson's ratio. The addition of SiO2, and thus removal of Al2O3 and/or B2O3, also makes the network less structurally adaptive to applied stress, since Al and B easily increase their coordination number under pressure, while this is not the case for Si under modest pressures. As such, although the silica-containing networks have more free volume, they cannot densify more during indentation, which in turn leads to an overall decrease in crack resistance upon SiO2 addition. Our work shows that, although pure silica glass has very high glass transition temperature and relatively high hardness, its addition in oxide glasses does not necessarily lead to significant increase in these properties due to the complex structural interactions in mixed network former glasses and the competitive effects of free volume and network rigidity.  相似文献   
39.
Developing less brittle oxide glasses is a grand challenge in the field of glass science and technology, as it would pave the way toward new glass applications and limit the overall raw material usage and energy consumption. However, in order to achieve this goal, more insight into the correlation between the chemical composition and material properties is required. In this work, we focus on the mechanical properties of quaternary sodium aluminoborosilicate glasses, wherein systematic changes in glass chemistry yield different resistances to indentation crack initiation. We discuss the origin of the composition dependence of indentation cracking based on an evaluation of the deformation mechanism taking place during the indentation event. To this end, we use a simple metric, the extent of indent side length recovery upon annealing, to quantify the extent of reversible volume deformation. Finally, we also compare the compositional trend in crack initiation resistance to that in crack growth resistance (fracture toughness), showing no simple correlation among the two.  相似文献   
40.
An extensive overview is presented of Vickers indentation crack lengths in ceramics in air. Measurement of such crack lengths is one of the most common and powerful assessments of the fracture properties of ceramics and the overview provides a critical evaluation of observed behavior as functions of material type and indentation load, and an extensive basis for comparison of results from new materials and analyses. The overview considers single crystals, polycrystals, transforming materials, glasses, and multiphase materials, including cermets, glass-ceramics, and tooth enamel. The coverage extends over structural and electronic ceramics, including oxides, carbides, nitrides, and titanates. The data are presented in a single format for ease of interpretation in terms of idealized indentation fracture and for inter-material comparisons; most data are unique to this work, but the results of selected studies from the published literature are included. The overview considers the precision and accuracy of crack length measurements and demonstrates a simple quantitative evaluation and ranking scheme for ceramic fracture based on load-adjusted crack length and cracking susceptibility. Indentation hardness and cracking threshold are also determined and related to the susceptibility. Material toughness is related to cracking susceptibility by fracture mechanics analyses: typical crack length measurements in air are shown to provide estimates of inert toughness with a relative uncertainty of ±50%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号