首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72272篇
  免费   6918篇
  国内免费   3824篇
电工技术   2129篇
综合类   5305篇
化学工业   16944篇
金属工艺   7005篇
机械仪表   6426篇
建筑科学   3959篇
矿业工程   2425篇
能源动力   1936篇
轻工业   9836篇
水利工程   1729篇
石油天然气   2526篇
武器工业   597篇
无线电   4936篇
一般工业技术   9449篇
冶金工业   2840篇
原子能技术   644篇
自动化技术   4328篇
  2024年   444篇
  2023年   1375篇
  2022年   2059篇
  2021年   2484篇
  2020年   2621篇
  2019年   2325篇
  2018年   2362篇
  2017年   2774篇
  2016年   2744篇
  2015年   2877篇
  2014年   3887篇
  2013年   4793篇
  2012年   5161篇
  2011年   5371篇
  2010年   3853篇
  2009年   3915篇
  2008年   3546篇
  2007年   4593篇
  2006年   4210篇
  2005年   3444篇
  2004年   2856篇
  2003年   2453篇
  2002年   2145篇
  2001年   1788篇
  2000年   1555篇
  1999年   1284篇
  1998年   1045篇
  1997年   964篇
  1996年   813篇
  1995年   606篇
  1994年   525篇
  1993年   443篇
  1992年   369篇
  1991年   248篇
  1990年   239篇
  1989年   171篇
  1988年   150篇
  1987年   74篇
  1986年   97篇
  1985年   75篇
  1984年   62篇
  1983年   55篇
  1982年   52篇
  1981年   15篇
  1980年   24篇
  1979年   17篇
  1975年   5篇
  1974年   6篇
  1959年   7篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Boron nitride nanotubes (BNNTs) are promising materials due to their unique physical and chemical properties. Fabrication technologies based on gas-phase reactions reduce the control and collection efficiency of BNNTs due to reactant and product dispersion within the reaction vessel. A surface growth method that allows for controllable growth of BNNTs in certain regions using a preburied boron source is introduced. This work leverages the high solubility of boron in metals to create a boronized layer on the surface which serves as the boron source to confine the growth of BNNTs. Dense and uniform BNNTs are obtained after loading catalysts onto the boronized substrate and annealing under ammonia. Confirmatory experiments demonstrate that the boride layer provides boron for BNNTs growth. Furthermore, the patterned growth of BNNTs is realized by patterning the boronizing region, demonstrating the controllability of this method. In addition, the Ni substrate with BNNTs growth exhibits better performance in corrosion resistance and thermal conductivity than pure Ni. This study introduces an alternative strategy for the surface growth of BNNTs based on boron source design, which offers new possibilities for the controllable preparation of BNNTs for various applications.  相似文献   
992.
Underwater optical communication (UOC) has attracted considerable interest in the continuous expansion of human activities in marine/ocean environments. The water-durable and self-powered photoelectrodes that act as a battery-free light receiver in UOC are particularly crucial, as they may directly face complex underwater conditions. Emerging photoelectrochemical (PEC)-type photodetectors are appealing owing to their intrinsic aqueous operation characteristics with versatile tunability of photoresponses. Herein, a self-powered PEC photodetector employing n-type gallium nitride (GaN) nanowires as a photoelectrode, which is decorated with an iridium oxide (IrOx) layer to optimize charge transfer dynamics at the GaN/electrolyte interface, is reported. Strikingly, the constructed n-GaN/IrOx photoelectrode breaks the responsivity-bandwidth trade-off limit by simultaneously improving the response speed and responsivity, delivering an ultrafast response speed with response/recovery times of only 2 µs/4 µs while achieving a high responsivity of 110.1 mA W−1. Importantly, the device exhibits a large bandwidth with 3 dB cutoff frequency exceeding 100 kHz in UOC tests, which is one of the highest values among self-powered photodetectors employed in optical communication system.  相似文献   
993.
Li-rich layered oxides (LLOs) have been considered as the most promising cathode materials for achieving high energy density Li-ion batteries. However, they suffer from continuous voltage decay during cycling, which seriously shortens the lifespan of the battery in practical applications. This review comprehensively elaborates and summarizes the state-of-the-art of the research in this field. It is started from the proposed mechanism of voltage decay that refers to the phase transition, microscopic defects, and oxygen redox or release. Furthermore, several strategies to mitigate the voltage decay of LLOs from different scales, such as surface modification, elemental doping, regulation of components, control of defect, and morphology design are summarized. Finally, a systematic outlook on the real root of voltage decay is provided, and more importantly, a potential solution to voltage recovery from electrochemistry. Based on this progress, some effective strategies with multiple scales will be feasible to create the conditions for their commercialization in the future.  相似文献   
994.
All-optical responsive nanomaterials, which can rapidly switch between two stable states, have been regarded as the next-generation memories due to their potential to realize binary information storage and implement on-chip, integrated photonic neuromorphic systems. Rare earth oxides are preeminent candidates owing to their extraordinary luminescent stability and narrow optical transitions. However, due to the lack of simple and effective optical switches, it is difficult to realize all-optical data storage, encoding, and retrieval by pure rare earth-doped luminescent nanoparticles. Here, a rapid and high-contrast of 104 luminescent switching of Y2O3:Eu3+ nanoparticle between the enhancement and quenching states is achieved by employing the strong light confinement and ultrafast thermal response of localized surface plasmon resonance. A self-encrypted all-optical memory is presented with optical information writing, encryption, reading, and re-writing, and a high-sensitivity synaptic response of emitters to frequency and light intensity flux, which can be harnessed to encrypt information flows and promote convenient and high-security information encryption. Such a convenient and secure plasmonic thermally assisted self-encrypting luminescent switch paves the way for constructing high-performance stimuli-responsive rare earth oxide crystals on demand and expanding their applications in various data encryption, anti-counterfeiting, and rewritable colouration devices.  相似文献   
995.
Methanol steam reforming (MSR) is viewed as an important technology in the growth of a future hydrogen economy, with methanol serving as an easily transportable and storable liquid hydrogen carrier. However, the thermocatalytic MSR reaction is energy intensive as it requires high temperatures. Herein, a novel L-Cu catalyst is successfully fabricated for photo-driven MSR through reduction of CuAl layered double hydroxide (CuAl-LDH) nanosheets. L-Cu offers outstanding activity for the photothermal conversion of methanol and water to hydrogen (160.5 µmol gcat−1 s−1) under ultraviolet-visible irradiation, with this rate being much higher than that achieved for L-Cu at the same temperature in the dark. Characterization studies using X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and high-resolution transmission electron microscopy determine that L-Cu catalyst comprise Cu nanoparticles on an amorphous alumina support. Computational calculations reveale that Cu localized surface plasmon resonance effects promote the activation of H2O, thereby underpinning the remarkable hydrogen production rates achieved during photo-driven MSR. This study introduces a novel photothermal strategy for hydrogen generation from methanol, demonstrating the enormous potential of photothermal catalysis in the chemical and energy sectors.  相似文献   
996.
Aqueous ammonium ion hybrid supercapacitor (A-HSC) combines the charge storage mechanisms of surface adsorption and bulk intercalation, making it a low-cost, safe, and sustainable energy storage candidate. However, its development is hindered by the low capacity and unclear charge storage fundamentals. Here, the strategy of phosphate ion-assisted surface functionalization is used to increase the ammonium ion storage capacity of an α-MoO3 electrode. Moreover, the understanding of charge storage mechanisms via structural characterization, electrochemical analysis, and theoretical calculation is advanced. It is shown that NH4+ intercalation into layered α-MoO3 is not dominant in the A-HSC system; rather, the charge storage mainly depends on the adsorption energy of surface “O” to NH4+. It is further revealed that the hydrogen bond chemistry of the coordination between “O” of surface phosphate ion and NH4+ is the reason for the capacity increase of MoO3. This study not only advances the basic understanding of rechargeable aqueous A-HSC but also demonstrates the promising future of surface engineering strategies for energy storage devices.  相似文献   
997.
Formamidinium lead triiodide (FAPbI3) has been demonstrated as the most efficient perovskite system to date, due to its excellent thermal stability and an ideal bandgap approaching the Shockley-Queisser limit. Whereas, there are intrinsic quantum confinement effects in FAPbI3, which lead to unwanted non-radiative recombination. Additionally, the black α-phase of FAPbI3 is unstable under room temperature due to the significant residual tensile stress in the film. To simultaneously address the above issues, a thermally-activated delayed fluorescence polymer P1 is designed in the study to modify the FAPbI3 film. Owing to the spectral overlap between the photoluminescence of P1 and absorption of the above-bandgap quantum wells of FAPbI3, the Förster energy transfer occurs at the P1/FAPbI3 interface, which further triggers the Dexter energy transfer within FAPbI3. The exciton “recycling” can thus be realized, which reduces the non-radiative recombination losses in perovskite solar cells (PSCs). Moreover, P1 is found to introduce compressive stress into FAPbI3, which relieves the tensile stress in perovskite. Consequently, the PSCs with P1 treatment achieve an outstanding power conversion efficiency (PCE) of 23.51%. Moreover, with the alleviation of stress in the perovskite film, flexible PSCs (f-PSCs) also deliver a high PCE of 21.40%.  相似文献   
998.
Metal halide perovskite single crystals are promising for diverse optoelectronic applications due to their outstanding properties. In comparison to the bulk, the crystal surface suffers from high defect density and is moisture sensitive; however, surface modification strategies of perovskite single crystals are relatively deficient. Herein, solar cells based on methylammonium lead triiodide (MAPbI3) thin single crystals are selected as a prototype to improve single-crystal perovskite devices by surface modification. The surface trap passivation and protection against moisture of MAPbI3 thin single crystals are achieved by one bifunctional molecule 3-mercaptopropyl(dimethoxy)methylsilane (MDMS). The sulfur atom of MDMS can coordinate with bare Pb2+ of MAPbI3 single crystals to reduce surface defect density and nonradiative recombination. As a result, the modified devices show a remarkable efficiency of 22.2%, which is the highest value for single-crystal MAPbI3 solar cells. Moreover, MDMS modification mitigates surface ion migration, leading to enhanced reverse-bias stability. Finally, the cross-link of silane molecules forms a protective layer on the crystal surface, which results in enhanced moisture stability of both materials and devices. This work provides an effective way for surface modification of perovskite single crystals, which is important for improving the performance of single-crystal perovskite solar cells, photodetectors, X-ray detectors, etc.  相似文献   
999.
The performance of five hole-transporting layers (HTLs) is investigated in both single-junction perovskite and Cu(In, Ga)Se2 (CIGSe)-perovskite tandem solar cells: nickel oxide (NiOx,), copper-doped nickel oxide (NiOx:Cu), NiOx+SAM, NiOx:Cu+SAM, and SAM, where SAM is the [2-(3,-6Dimethoxy-9H-carbazol-9yl)ethyl]phosphonic acid (MeO-2PACz) self-assembled monolayer. The performance of the devices is correlated to the charge-carrier dynamics at the HTL/perovskite interface and the limiting factors of these HTLs are analyzed by performing time-resolved and absolute photoluminescence ((Tr)PL), transient surface photovoltage (tr-SPV), and X-ray/UV photoemission spectroscopy (XPS/UPS) measurements on indium tin oxide (ITO)/HTL/perovskite and CIGSe/HTL/perovskite stacks. A high quasi-Fermi level splitting to open-circuit (QFLS-Voc) deficit is detected for the NiOx-based devices, attributed to electron trapping and poor hole extraction at the NiOx-perovskite interface and a low carrier effective lifetime in the bulk of the perovskite. Simultaneously, doping the NiOx with 2% Cu and passivating its surface with MeO-2PACz suppresses the electron trapping, enhances the holes extraction, reduces the non-radiative interfacial recombination, and improves the band alignment. Due to this superior interfacial charge-carrier dynamics, NiOx:Cu+SAM is found to be the most suitable HTL for the monolithic CIGSe-perovskite tandem devices, enabling a power-conversion efficiency (PCE) of 23.4%, Voc of 1.72V, and a fill factor (FF) of 71%, while the remaining four HTLs suffer from prominent Voc and FF losses.  相似文献   
1000.
模块化可重构机器人由于其构型多变,运动形式丰富等特点,可以在非结构化环境或未知环境中执行任务,在最近几年迅速成为机器人研究领域的前沿和热点. 模块化可重构机器人在军事、医疗、教育等众多工程领域具有广泛的应用前景,其典型代表包括仿生多足模块化机器人、模块化可重构机械臂、晶格式模块化机器人等. 模块化可重构机器人丰富的构型设计、多样的连接特征、不断拓展的应用范围,给动力学建模与控制带来了很多挑战和机遇. 本文首先阐述了模块化可重构机器人的研究背景和意义,并概述了其构型分类与设计、构型描述与运动学建模方法.随后,本文系统回顾了模块化可重构机器人动力学研究中相关问题的最新进展,包括:(1)系统整体动力学建模;(2)结合面以及对接机构动力学建模;(3)基于动力学模型的控制方法. 本文最后提出了模块化可重构机器人动力学研究中若干值得关注的问题.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号