首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7764篇
  免费   1230篇
  国内免费   503篇
电工技术   50篇
综合类   281篇
化学工业   4390篇
金属工艺   186篇
机械仪表   76篇
建筑科学   267篇
矿业工程   106篇
能源动力   361篇
轻工业   398篇
水利工程   23篇
石油天然气   248篇
武器工业   32篇
无线电   945篇
一般工业技术   1840篇
冶金工业   184篇
原子能技术   63篇
自动化技术   47篇
  2024年   35篇
  2023年   202篇
  2022年   176篇
  2021年   402篇
  2020年   380篇
  2019年   353篇
  2018年   321篇
  2017年   351篇
  2016年   322篇
  2015年   369篇
  2014年   434篇
  2013年   388篇
  2012年   498篇
  2011年   496篇
  2010年   420篇
  2009年   428篇
  2008年   427篇
  2007年   576篇
  2006年   565篇
  2005年   568篇
  2004年   404篇
  2003年   343篇
  2002年   236篇
  2001年   159篇
  2000年   114篇
  1999年   118篇
  1998年   81篇
  1997年   76篇
  1996年   47篇
  1995年   39篇
  1994年   38篇
  1993年   26篇
  1992年   20篇
  1991年   12篇
  1990年   14篇
  1989年   6篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1951年   5篇
排序方式: 共有9497条查询结果,搜索用时 15 毫秒
21.
The low energy density of supercapacitors, especially supercapacitors based on aqueous electrolytes, is the main factor limiting their application, and the energy density is closely related to the operating potential window of the supercapacitor. The polymer electrolyte is the main contributor to the safe operation and good ion conductivity of the supercapacitor. In this study, a crosslinked quaternized poly(arylene ether sulfone) (PAES) membrane was prepared via crosslinking during membrane formation with a thermal-only treatment and applied in an electric double-layer capacitor (EDLC). The pre-prepared PAES membrane formed a polymer electrolyte with 1 mol/L Li2SO4 and was then fabricated into an EDLC single cell. The properties of both the membrane and ELDC were investigated. The preferred cPAES-N-0.2 polymer electrolyte showed an ionic conductivity of 1.18 mS/cm. The optimized EDLC exhibited a single-electrode gravimetric capacitance of 104.92 F/g at a current density of 1.0 A/g and a high operating potential window (1.5 V); it, thereby, achieved a high energy density of 8.20 W h/kg. The EDLC also exhibited excellent cycling properties over 3000 charge–discharge cycles. The crosslinked structures promoted the tensile strength and thermal stability of the PAES membranes; this was accompanied by a slight decrease in the ionic conductivity. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47759.  相似文献   
22.
Formation of cobalt sulfide hollow nanocrystals through a mechanism similar to the Kirkendall Effect has been investigated in detail. It is found that performing the reaction at > 120 °C leads to fast formation of a single void inside each shell, whereas at room temperature multiple voids are formed within each shell, which can be attributed to strongly temperature‐dependent diffusivities for vacancies. The void formation process is dominated by outward diffusion of cobalt cations; still, the occurrence of significant inward transport of sulfur anions can be inferred as the final voids are smaller in diameter than the original cobalt nanocrystals. Comparison of volume distributions for initial and final nanostructures indicates excess apparent volume in shells, implying significant porosity and/or a defective structure. Indirect evidence for fracture of shells during growth at lower temperatures was observed in shell‐size statistics and transmission electron microscopy images of as‐grown shells. An idealized model of the diffusional process imposes two minimal requirements on material parameters for shell growth to be obtainable within a specific synthetic system.  相似文献   
23.
We report a general template strategy for rational fabrication of a new class of nanostructured materials consisting of multicore shell particles. Our approach is demonstrated by encapsulating Au or Pt nanoparticles in silica shells. Other superstructures of these hollow shells, like dimers, trimers, and tetramers can also be formed by nanoparticle‐mediated self‐assembly. We have also used the as‐prepared multicore Au–silica hollow particles to perform the first studies of Ostwald ripening in confined microspace, in which chloride was found to be an efficient mediating ligand. After treatment with aqua regia, Au–Cl complex is formed inside the shell, and is found to be very active under in situ transmission electron microscopy observations while confined in a microcell. This aspect of the work is expected to motivate further in situ studies of confined crystal growth.  相似文献   
24.
Selected aromatic amides were used to model the chemical reactivity of aromatic polyamides found in thin‐film composite reverse osmosis (RO) membranes. Chlorination and possible amide bond cleavage of aromatic amides upon exposure to aqueous chlorine, which can lead to membrane failure, were investigated. Correlations are made of the available chlorine concentration, pH, and exposure time with chemical changes in the model compounds. From the observed reactivity trends, insights are obtained into the mechanism of RO membrane performance loss upon chlorine exposure. Two chemical pathways for degradation are shown, one at constant pH and another that is pH‐history dependent. An alternative strategy is presented for the design of chlorine‐resistant RO membranes, and an initial performance study of RO membranes incorporating this strategy is reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1173–1184, 2003  相似文献   
25.
26.
27.
A simple template‐free high‐temperature evaporation method was developed for the growth of crystalline Si microtubes for the first time. As‐grown Si microtubes were characterized using X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and room‐temperature photoluminescence. The lengths of the Si tubes can reach several hundreds of micrometers; some of them have lengths on the order of millimeters. Each tube has a uniform outer diameter along its entire length, and the typical outer diameter is ≈ 2–3 μm. Most of the tubes have a wall thickness of ≈ 400–500 nm, though a considerable number of them exhibit a very thin wall thickness of ≈ 50 nm. Room‐temperature photoluminescence measurement shows the as‐synthesized Si microtubes have two strong emission peaks centered at ≈ 589 nm and ≈ 617 nm and a weak emission peak centered at ≈ 455 nm. A possible mechanism for the formation of these Si tubes is proposed. We believe that the present discovery of the crystalline Si microtubes will promote further experimental studies on their physical properties and smart applications.  相似文献   
28.
29.
A new supported liquid membrane (SLM) system was prepared for the selective transport of bismuth ions from the aqueous feed into the aqueous permeate phase. The support of the SLM was a thin porous polypropylene or polyvinylidene fluoride membrane impregnated with diisooctyldithiophosphinic acid (Cyanex 301) as mobile carrier in 4‐chloroacetophenon as organic solvent. Cyanex 301 acts as a highly selective carrier for the uphill transport of bismuth ions through the SLM. In the presence of HNO3 as a metal ion acceptor in the strip solution, the transport of bismuth ions into the strip side reached 70 % of the initial feed concentration after 3.5 hours. The selectivity and efficiency of bismuth transport from aqueous solutions containing different mixtures of cations were investigated. In the presence of P2O72– ions as suitable masking agent in the feed solution, the interfering effects of other cations were completely eliminated. The selective transport of bismuth through SLM is superior to liquid‐liquid extraction or through bulk liquid membranes. This is due to the high efficiency. The SLM reduces the solvent requirements, combines extraction and stripping operations in a single process and allows the use of highly selective extractants. The system may be applied to samples containing very low bismuth concentrations.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号