Many biological and thermochemical processing options exist for the conversion of biomass to fuels.
Commercially, these options are assessed in terms of fuel product yield and quality. However, attention must also be paid to the environmental aspects of each technology so that any commercial plant can meet the increasingly stringent environmental legislation in the world today.
The environmental aspects of biological conversion (biogasification and bioliquefaction) and thermal conversion (high pressure liquefaction, flash pyrolysis, and gasification) are reviewed. Biological conversion processes are likely to generate waste streams which are more treatable than those from thermal conversion processes but the available data for thermal liquefaction are very limited. Close attention to waste minimisation is recommended and processing options that greatly reduce or eliminate waste streams have been identified. Product upgrading and it's effect on wastewater quality also requires attention. Emphasis in further research studies needs to be placed on providing authentic waste streams for environmental assessment. 相似文献
In the context of climate change, efficiency and energy security, biomass gasification is likely to play an important role. Circulating fluidised bed (CFB) technology was selected for the current study. The objective of this research is to develop a computer model of a CFB biomass gasifier that can predict gasifier performance under various operating conditions. An original model was developed using ASPEN Plus. The model is based on Gibbs free energy minimisation. The restricted equilibrium method was used to calibrate it against experimental data. This was achieved by specifying the temperature approach for the gasification reactions. The model predicts syn-gas composition, conversion efficiency and heating values in good agreement with experimental data. Operating parameters were varied over a wide range. Parameters such as equivalence ratio (ER), temperature, air preheating, biomass moisture and steam injection were found to influence syn-gas composition, heating value, and conversion efficiency. The results indicate an ER and temperature range over which hydrogen (H2) and carbon monoxide (CO) are maximised, which in turn ensures a high heating value and cold gas efficiency (CGE). Gas heating value was found to decrease with ER. Air preheating increases H2 and CO production, which increases gas heating value and CGE. Air preheating is more effective at low ERs. A critical air temperature exists after which additional preheating has little influence. Steam has better reactivity than fuel bound moisture. Increasing moisture degrades performance therefore the input fuel should be pre-dried. Steam injection should be employed if a H2 rich syn-gas is desired. 相似文献
In this article, an equilibrium model based on Gibbs free energy minimisation is presented for steam gasification of biomass in process simulator ASPEN PLUS. Carbon is assumed as fully converted into product gases and no tar content is assumed to be present in gaseous product. The objective is to arrive at the optimum process conditions of gasification. An analysis on the sensitivity of producer gas composition, lower heating value, combustible gas yield, and first and second law efficiencies on gasification process variables including reactor temperature, pressure and steam to biomass mass ratio is also envisaged. Simulations are performed with wood as the biomass material, based on real gas behaviour for product gases and gasifying medium. The predicted results of the model are compared with another Gibbs free energy model formulated using simulated annealing minimisation algorithm. The present ASPEN PLUS model is validated with published experimental results on steam gasification on a fluidised bed gasifier. 相似文献
The identification of polynomial NARX models is typically performed by incremental model building techniques. These methods assess the importance of each regressor based on the evaluation of partial individual models, which may ultimately lead to erroneous model selections. A more robust assessment of the significance of a specific model term can be obtained by considering ensembles of models, as done by the RaMSS algorithm. In that context, the identification task is formulated in a probabilistic fashion and a Bernoulli distribution is employed to represent the probability that a regressor belongs to the target model. Then, samples of the model distribution are collected to gather reliable information to update it, until convergence to a specific model. The basic RaMSS algorithm employs multiple independent univariate Bernoulli distributions associated to the different candidate model terms, thus overlooking the correlations between different terms, which are typically important in the selection process. Here, a multivariate Bernoulli distribution is employed, in which the sampling of a given term is conditioned by the sampling of the others. The added complexity inherent in considering the regressor correlation properties is more than compensated by the achievable improvements in terms of accuracy of the model selection process. 相似文献
There is a vast literature on the problem of how to sequence products in a blocking flow shop so as to minimise makespan. It is often the case, however, that problem instances have multiple optima, and that within the set of optimal (or near optimal) solutions, other characteristics of importance vary substantially. Thus, the solution found by an approach that solely minimises makespan may be inferior to alternate solutions that have comparable makespan but superior value with regard to other criteria. In this paper, we demonstrate this by considering makespan and customer responsiveness, the potential that a sequence has for modification so as to incorporate customer order changes after production has begun. We consider the relationship between these two metrics and present computational results to show how different approaches to making trade-offs between them can change the solution characteristics substantially. 相似文献
This paper describes a torque ripple reduction technique with constant switching frequency for direct torque control (DTC) of an induction motor (IM). This method enables a minimum torque ripple control. In order to obtain a constant switching frequency and hence a torque ripple reduction, we propose a control technique for IM. It consists of controlling directly the electromagnetic torque by using a modulated hysteresis controller. The design methodology is based on space vector modulation (SVM) of electrical machines with digital vector control. MATLAB simulations supported with experimental study are used. The simulation and experimental results of this proposed algorithm show an adequate dynamic to IM; however, the research can be extended to include synchronous motors as well. The implementation of the proposed algorithm is described. It doesn’t require any PI controller in the torque control loop. The hardware inverter is controlled digitally using a Texas Instruments TMS320F240 digital signal processor (DSP) with composed C codes for generating the required references. The results obtained from simulation and experiments confirmed the feasibility of the proposed strategy compared to the conventional one. 相似文献
An evaluation of various operational parameters on the process of sludge ozonation was carried out based on semi-batch experiments. Particular reference has been given to examine the main parameters affecting the solubilisation of organic matter and nitrogenous compounds. Various sets of experiments were undertaken using real sewage sludge to feed a semi-industrial ozonation plant. Applying ozone dosages between 25 and 35 mg O(3)/gTSS, the organic matter solubilisation obtained through ozonation increases proportionally to ozone dosage until a maximum value of 430 mg COD/L. Concerning the nitrogenous compounds, no variation in nitrite concentration and a low increase in nitrate concentration were attained, regardless of the applied ozone dosage. Little increase in ammonia concentration was achieved for low ozone dosages, whilst applying dosages higher than 20 mg O(3)/gTSS, the variation of ammonia increased proportionally with ozone dosage. Experiments using hydraulic retention time (HRT) between 10 and 60 min resulted in a similar COD solubilisation, confirming a rapid rate of cell lysis during ozonation of sludge. 相似文献
In this paper, the problem of scheduling with agreements (SWA) is considered. In scheduling, this consists of a set of jobs non-preemptively on identical machines subject to constraints that only some specific jobs can be scheduled concurrently on different machines. These constraints are given by an agreement graph and the aim is to minimise the makespan. In the case of two machines we extend two NP-hardness results of SWA with processing times at most three that hold for bipartite agreement graphs to more general agreement graphs. Complexity results of SWA are established in the case of split and complement of bipartite graphs. We also present some approximation results for SWA. 相似文献