首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   36篇
化学工业   17篇
建筑科学   18篇
一般工业技术   166篇
  2023年   14篇
  2021年   13篇
  2020年   23篇
  2019年   27篇
  2018年   13篇
  2017年   10篇
  2016年   4篇
  2015年   7篇
  2014年   11篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
51.
The microstructure, texture and mechanical properties of AA7003 extrusion sheets processed with different parameters were investigated. Furthermore, the effects of the microstructure and texture on the mechanical properties were discussed. The grain morphology and the texture were analyzed by using a combination of scanning electron microscopy and electron backscatter diffraction. Moreover, the mechanical properties were measured by tensile tests and the tensile fracture morphology was also analyzed by scanning electron microscopy. The results showed that the maximum recrystallization extent occurred at the extrusion process conditions of T = 450 °C and v = 1 mm/s, and the increase in recrystallization extent had a negative effect on the tensile strength. Moreover, a relatively strong recrystallization cube orientation <100> existed when the extrusion temperature was 470 °C, showing a high tensile strength and elongation. Thus, it can be concluded that the cube texture is beneficial to the tensile strength and elongation in extruded AA7003 alloy.  相似文献   
52.
Copper matrix composites were fabricated through mixing fixed amount of reduced graphene oxide and the different amounts of titanium. The dried copper/titanium/reduced graphene oxide mixture powders were firstly obtained by the wet‐mixing process, and then the spark plasma sintering process realized their faster densification. In the as‐sintered bulk composites, the layered reduced graphene oxide network, uniform titanium particles and copper‐titanium solid solution are observed in copper matrix. Investigations on mechanical properties show that the as‐prepared bulk composites exhibit the hardness and compressive yield strength compared with single reduced graphene oxide added composites. Increased titanium addition resulted into higher hardness and strength. The relevant formation and failure mechanisms of the composites and their influence on mechanical properties were discussed.  相似文献   
53.
To improve the mechanical properties of cast aluminium alloys several post‐heat treatments are known. However, these treatments cannot directly be transposed to additively via selective laser melting manufactured aluminium alloys, e. g., aluminium‐silicon‐magnesium (AlSi10Mg). Therefore, this study aims to determine suitable post‐heat treatments to optimise the mechanical properties of SLM‐built AlSi10Mg specimen. The influence of various post‐heat treatment conditions on the material characteristics was examined through hardness and tensile tests. The findings indicate that the Vickers hardness and ultimate tensile strength could not be improved via secondary precipitation hardening, whereas the fracture elongation shows a value which is distinctly higher than the values of a comparable cast alloy. Solution annealing at 525 °C reduces the hardness and the ultimate tensile strength by about 40 % and increases the fracture elongation three times. A subsequent precipitation hardening allows recovery of 80 % of the as‐built hardness, and 90 % of the previous ultimate tensile strength combined with maintaining an improved fracture elongation of about 35 % compared to the respective as‐fabricated condition.  相似文献   
54.
The effect of prior austenite on reversed austenite stability and mechanical properties of Fe‐0.06C‐0.2Si‐5.5Mn‐0.4Cr (wt.%) annealed steels was elucidated. With the decrease of austenitizing temperature from 1250 °C to 980 °C, the prior austenite changed from complete recrystallization to partial recrystallization, and the average austenite size was reduced. The volume fraction of reversed austenite was increased from 26.32 % to 30.25 % because of high density of grain boundaries and dislocations. The martensite transformation temperature of annealed steels was increased from ~115 °C to ~150 °C, and both of thermal and mechanical stability of reversed were reduced. There was no significant different in tensile properties, however, the impact toughness was enhanced from 100 J to 180 J at ?60 °C. The excellent impact toughness in annealed steel (austenitized at 980 °C) was obtained because of higher density of high misorientation grain boundaries, more volume fraction of reversed austenite and reduced segregation at grain boundaries.  相似文献   
55.
In this work the two massive forming processes linear flow splitting and linear bend splitting, which generate profiles from sheet metal, are evaluated with respect to characteristic manufacturing‐induced material properties of the produced parts. Resulting microstructural features such as grain size and shape as well as crystallographic textures are linked to mechanical properties such as strength, ductility and anisotropic elasticity and general rules for their evolution are defined. Residual stress distributions are detailed and discussed with regard to the causing geometrical and forming process related aspects. The aim of this paper is to give a comprehensive overview of the properties of profiles produced by linear flow splitting and linear bend splitting and to illustrate general rules for their evolution in order to provide guidelines for an optimized product development process which allows a beneficial use of the manufacturing‐induced properties.  相似文献   
56.
With the help of new design tools, manufacturing‐integrated solutions can be generated that concurrently consider function and process. Based on the design pattern matrix, solution elements can be developed that realize the product function by systematically utilizing manufacturing‐induced properties. The developed manufacturing‐integrated product solutions are refined using computer‐aided methods (feature‐based modeling and information modeling). A product embodiment is generated that is specifically tailored to the chosen manufacturing technology. An integrated information model allows the introduced tools to be used throughout the entire development process. The example of a linear flow split snap‐fit fastening illustrates how the tools beneficially interact and realize manufacturing potential, resulting in an innovative product design.  相似文献   
57.
In injection moulding processes, the melt undergoes a complex deformation and cooling history, which results in an inhomogeneous distribution of crystalline superstructures in semi‐crystalline thermoplastics, which significantly influences their final mechanical and thermal properties. In this paper we describe the determination of local effective thermal properties of a moulded part via a multiscale simulation approach. First a macroscopic filling and heat transfer simulation is performed followed by a microstructure evolution calculation on the micro‐scale. Then, the effective thermal properties are derived via a two‐level homogenization scheme. The results show that the effective thermal conductivity is anisotropic and that it varies asymmetrically over the analysed plate sections.  相似文献   
58.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE) reinforced with carbon fibre (CF) underwent an enhancement of heat and wear resistant with the addition of polyphenyl ester (POB) and graphite, respectively. The effect of graphite content on the tribological properties of the composites was studied. The wear surface was examined using scanning electron microscope (SEM). The results of the sliding wear tests showed that with graphite loading, wear resistance increased and the coefficient of friction was much more stable. In addition, graphite improved the tribological properties of the composite. Hardness, impact strengths and thermal stability of the composites were enhanced. With increased load, the wear rate of the ultra‐high‐molecular‐weight polyethylene+carbon fibre+polyphenyl ester+10 % graphite composite tended to increase, whereas the coefficient of friction decreased. The adherence and plastic deformation were dominant wear mechanisms for the ultra‐high‐molecular‐weight polyethylene+carbon fibre+polyphenyl ester+graphite composites. The formation of a thin and uniform transfer film was observed.  相似文献   
59.
Failure Behavior of Fiber Reinforced Ceramics with Porous Matrix – Experiments and Modeling A 2D reinforced carbon/carbon‐composite was investigated in tensile tests with variable fiber orientation relative to the loading direction. The experimentel results from the 0° ‐ and 45° ‐ tests allow the derivation of material parameters to be implemented into a macroscopic model describing the materials response under quasi‐static loading conditions. The model is based on the damaging concept and plasticity theory and is used to predict strength and elastic constants of the composite under variable angles between fiber orientation and loading direction. The predicted data are confirmed by experimental results.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号