首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   36篇
化学工业   17篇
建筑科学   18篇
一般工业技术   166篇
  2023年   14篇
  2021年   13篇
  2020年   23篇
  2019年   27篇
  2018年   13篇
  2017年   10篇
  2016年   4篇
  2015年   7篇
  2014年   11篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有201条查询结果,搜索用时 46 毫秒
61.
62.
Chemical Segregation Effect on Mechanical Properties of Thioxo Formed Components Thixoforming is a near net shape forming process of semi solid billets with a stiffness, which is comparable to “butter”. Advantages of conventional forming and casting processes can be combined due to this modern forming process technology. The objective of this investigation is to identify the effect of local chemical segregation regarding the microstructure and mechanical properties in various parts of a component. Different components and component regions – with diverse cross‐sections and flow lengths – have been tested. Tensile, charpy and fatigue tests are completed by metallography and local chemical analysis. The investigation was focused on AlSi7Mg0.3 and AlSi6Cu3 aluminium casting alloys. It can be confirmed, that chemical composition of the raw material and segregation are important effects on mechanical properties of components. Chemical segregation can be caused by abrupt changes in cross‐section. The inhomogeneity verified by chemical analysis and metallography are important effects on mechanical properties of Thixoforming components. In future the counteract between metal structure and processing steps regarding mechanical properties of components must be examined more intensively. The aim is to create a fundamental understanding of the relationship between the structure, chemical composition, homogeneity and characteristics of aluminium materials.  相似文献   
63.
The objective of this work is to demonstrate the feasibility of friction stir welding (FSW) AISI 304 austenitic stainless steels. The tool used was formed of a tungsten‐based alloy. The specimens were welded on an 11 kW vertical milling machine. Defect‐free welds were produced on 2.5 mm plates of hot‐rolled AISI 304 austenitic stainless steels at travel speeds ranging from 40 to 100 mm/min with a constant rotating speed of 1000 rpm. Tensile strengths and hardness values of the weld interface were determined and microstructure features of these samples were investigated.  相似文献   
64.
Calcium phosphate cements (CPC), based on multicomponent powder mixtures of calcium orthophosphates with medium particle sizes in the region of 1 ‐ 20 μm, set isothermally in an aqueous environment to form hydroxyapatite (HA). HA cement reactants include tetracalcium phosphate (TTCP), tricalcium phosphate (TCP), dicalcium phosphate anhydrate (DCPA), dicalcium phosphate dihydrate (DCPD), monocalcium phosphate (MCPA) or octacalcium phosphate (OCP). The aim of this study was to improve the mechanical performance of TTCP / DCPA cement by adding several metal oxides to tetracalcium phosphate during the fabrication process. Cements based on tetracalcium phosphate mixed with silica or titanium oxide showed significant increases in compressive strength, approximately 80 ‐ 100 MPa, whilst no change in the mechanical behavior of CPC was observed if zirconia was added. X‐ray diffraction measurement confirmed the setting reaction of doped cements was similar to that of pure CPC. Low crystalline HA was found to be the main constituant of set cement; additional phases, such as calcium titanate or calcium zirconate, were not involved in the reaction. A mechanical reinforcement effect was thought to result from changes in the thermodynamic or kinetic solubilities of doped tetracalcium phosphates, this would lead to slower HA crystal formation and a more cross‐linked cement structure.  相似文献   
65.
66.
In this study, friction stir processing techniques has been utilized to fabricate graphite-reinforced aluminium matrix composite. Silicon carbide will be mixed together with graphite flakes as reinforcement with the composition of hybrid ratio 60 : 40. The manipulated variable of this project is the number of passes used during friction stir processing (1, 2 and 3 passes). Three different number of passes are used to investigate its effect onto the reinforcement dispersion inside the aluminium metal matrix composites. Microstructural analysis has shown that with increasing number of passes, the distribution of reinforcement particles becomes more uniform and homogeneous. Nanoreinforcement particle dispersions are observed and analysed. Result shows that the size of agglomerations across the composite surface decreases as the number of passes increases. Further observation and analysis of on the particles has confirmed that graphite flakes have been successfully shear exfoliated into layers to cover more surface area. The overall mechanical properties have also observed significant increase with increasing number of passes. Sample with highest number of pass (3 pass run) managed to achieve maximum tensile strength and elongation percentage of 304.04 MPa and 2.54 %, respectively, which is the highest value among all the samples tested.  相似文献   
67.
The microstructures and mechanical properties of eight kinds of Fe‐Cr‐B‐Al alloys containing X wt.%Al‐0.35 wt.%C‐10.0 wt.%Cr‐1.4 wt.%B‐0.6 wt.%Si‐0.8 wt.%Mn (X = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0) were studied by means of optical microscopy (OM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Rockwell hardness and Vickers micro‐hardness testers. The results indicate that the as‐cast microstructure of aluminium‐free sample consists of the martensite, austenite and eutectic borocarbides, and the eutectic borocarbides are the mixture of (Fe, Cr)2B and (Cr, Fe)7(C, B)3, and its hardness reaches 65 HRC. When a small amount of aluminium element (Al ? 1.0 wt.%) is added, the phase composition has no significant change, and the hardness excels 65 HRC. When the concentration of aluminium reaches 1.5 wt.%, the matrix of Fe‐Cr‐B‐Al alloy becomes pearlite and δ‐ferrite, leading to a sharply decrease of the hardness. The proportion of ferrite goes up along with increasing aluminium concentration, and the hardness of Fe‐Cr‐B‐Al alloy has slight decrease.  相似文献   
68.
The main aim of the present work is to experimentally evaluate the deep drawing behaviour of adhesive bonded sheets at different adhesive properties and predict the same using finite element simulations. The deep drawing quality steel and SS316L stainless steel are used as base materials for experiments and simulations. The deep drawing behaviour is also predicted using available analytical equations and proposed semi‐empirical equations. Such predictions are validated with experimental results. It is observed that due to increased plasticity of adhesive layer, the hardener rich formulation of adhesive improves the deep drawability of adhesive bonded blanks. The presence of carbon black in the adhesive has improved the drawability of bonded sheets up to a certain limit, say 2% by weight in the present work. The deep drawing behaviour predicted either by approach 1 (by giving experimentally evaluated adhesive properties as input) and by approach 2 (adhesive properties evaluated from rule of mixtures) are almost same, which indicates that both the methods can be used for forming behaviour prediction. The deep drawability predictions are moderately accurate with respect to experimental observation. The accuracy of analytical models for maximum load predictions is encouraging while comparing it with experimental results and numerical predictions. The proposed semi‐empirical equations show promising results to obtain initial estimate about the load‐progression behaviour of bonded sheets.  相似文献   
69.
Weld seams form when profiles are extruded using porthole or bridge dies. These are inevitable when producing industrial relevant hollow profiles but imply the weak spot if the profiles are used for applications with high mechanical requirements. The characterization of formed weld seams together with their mechanical properties is problematic or sometimes even impossible due to the complex profile geometries. Expansion, bending or tensile tests of profiles or parts of the same were hitherto often used for their analysis lacking the possibility of basic assumptions about their properties. The investigations described herein circumvent the problem by using a flat profile exhibiting the weld seam in the middle. Flat profiles offer the possibility of standardised specimens for tensile testing. The extrusion experiments focused on the aluminium alloys EN‐AW 6060 and EN‐AW 6082. During the experiments billet temperature and extrusion speed have been varied. The microstructure was analysed subsequent to explain the obtained results and to offer a possibility of characterisation.  相似文献   
70.
The influence of the semi‐solid solidification production parameters (shear rate and agitation time) and the concentration of reinforcing particles on the microstructure formation and mechanical properties of a 520 aluminum alloy reinforced with Al2O3 particles was investigated. Depending on the content of reinforcing particles and the stirring conditions different rosette structures were formed. The type of wear mechanism (delamination or adhesion) depends on the size of the rosettes and the distribution of Al2O3 reinforcements. Best mechanical properties were obtained for metal matrix composites reinforced with 12 wt% of Al2O3 stirred at a shear rate of 2100 s–1 for 1800 s. These samples showed tensile strength and yield stress similar to the commercial A520 alloy. The hardness and wear resistance were improved by the addition of Al2O3 particles, meanwhile the elongation to fracture was reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号