首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   36篇
化学工业   17篇
建筑科学   18篇
一般工业技术   166篇
  2023年   14篇
  2021年   13篇
  2020年   23篇
  2019年   27篇
  2018年   13篇
  2017年   10篇
  2016年   4篇
  2015年   7篇
  2014年   11篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有201条查询结果,搜索用时 31 毫秒
81.
Changes in electrical resistance accompanying transformations in steels with magnetic change (e.g. γ → martensite/bainite) and without magnetic change (e.g. γ → α, above Curie temperature) have been examined; the former class affects the resistivity the latter does not. Next, while the efficacy of electrical resistivity measurement in capturing the well‐known features of austenite stabilization (e.g. over – ageing, reversibility, and influence of prior martensite amount and so on) in high carbon steels has been reported in an earlier publication, new features (e.g. increase in resistance ‐increase at very low temperatures, change in temperature co‐efficient of resistivity in the stabilized material etc.) are highlighted here. Finally, the work shows that a quantitative estimate of precipitation in the copper bearing, age‐hardenable HSLA‐100 steel during tempering can be done by continuous electrical resistivity measurement. These data also allow an in‐depth kinetic analysis using the Johnson‐Mehl‐Avrami equation.  相似文献   
82.
Shape memory alloys are susceptible to two types of fatigue in addition to classical fatigue: 1. Pseudo‐elastic fatigue leads to an increase in the slope of the pseudo‐elastic plateau and final loss of pseudo‐elasticity 2. A change in transformation temperature. Usually the martensite temperature is lowered with the number of cycles until final loss of transformability. This paper describes measures to improve stability against both types of fatigue. Such methods are simple ageing in order to achieve precipitation in austenite, and thermo‐mechanical treatments such as ausforming that introduce lattice defects into austenite, which transforms subsequently into martensite. Another method consists in the introduction of defects into martensite by marforming plus subsequent ageing. This ageing treatment has two purposes. It increases the classical strength and restores the β‐phase from residual martensite and consequently it recreates transformability. It is shown that the last mentioned method leads to the greatest effect in respect to stabilisation against both types of fatigue. An additional effect of these treatments is a transition of localised to more homogeneous strain. Its relevance for fatigue resistance is still under investigation.  相似文献   
83.
LM13 aluminium alloy (Al−Si12CulMg1) with titanium diboride (TiB2) and boron carbide (B4C) particulate hybrid composites have been prepared using stir casting process. Wt% of titanium diboride is varied from 0–10 and constant 5 wt% boron carbide particles have been used to reinforce LM13 aluminium alloy. Microstructure of the composites has been investigated and mechanical properties viz., hardness, the tensile strength of composites have been analyzed. Wear behavior of samples has been tested using a pin on disc apparatus under varying load (20 N–50 N) for a sliding distance of 2000 m. Fracture and wear on the surface of samples have been investigated. Microstructures of composites show uniform dispersion of particles in LM13 aluminium alloy. Hardness and tensile strength of composites increased with increasing wt % of reinforcements. Dry sliding wear test results reveal that weight loss of composites increased with increasing load and sliding distance. Fracture on the surface of composites reveals that the initiation of crack is at the interface of the matrix and reinforcement whereas dimples are observed for LM13 aluminium alloy. Worn surface of composites shows fine grooves and delamination is observed for the matrix.  相似文献   
84.
The paper describes experimental and computational testing of regular open‐cell cellular structures behaviour under impact loading. Open‐cell cellular specimens made of aluminium alloy and polymer were experimentally tested under quasi‐static and dynamic compressive loading in order to evaluate the failure conditions and the strain rate sensitivity. Additionally, specimens with viscous fillers have been tested to determine the increase of the energy absorption due to filler effects. The tests have shown that brittle behaviour of the cellular structure due to sudden rupture of intercellular walls observed in quasi‐static and dynamic tests is reduced by introduction of viscous filler, while at the same time the energy absorption is increased. The influence of fluid filler on open‐cell cellular material behaviour under impact loading was further investigated with parametric computational simulations, where fully coupled interaction between the base material and the pore filler was considered. The explicit nonlinear finite element code LS‐DYNA was used for this purpose. Different failure criteria were evaluated to simulate the collapsing of intercellular walls and the failure mechanism of cellular structures in general. The new computational models and presented procedures enable determination of the optimal geometric and material parameters of cellular materials with viscous fillers for individual application demands. For example, the cellular structure stiffness and impact energy absorption through controlled deformation can be easily adapted to improve the efficiency of crash absorbers.  相似文献   
85.
In this paper, 1.5 wt%Sn was added to the AZ31 magnesium alloy aiming at improving the mechanical properties by using a low cost alloying element. Both alloys were prepared in the cast/heat treated (HT), rolled at 350 °C, rolled/heat treated at 400 °C and extruded at 350 °C. The results indicate that with addition of tin an improvement was obtained in both tensile strength and ductility of the AZ31 alloy in the cast/heat treated and in the extruded conditions. The yield and ultimate tensile strengths reached 98 MPa and 224 MPa respectively with 14 % elongation in the cast/heat treated condition while in the extruded condition these values were 212 MPa and 286 MPa with 20 % elongation. The tensile strength was even higher after rolling reaching 315 MPa for AZ31 with tin addition; however, as the material temperature during the last passes has decreased to relatively low values, the % elongation decreased to 1 %. After heat treatment at 400 °C for 2 hours the % elongation was restored and reached 12 %; this was accompanied by a decrease in tensile strength which reached 276 MPa. The results are discussed in relation to the microstructure evolution including grain size, phase identification, and volume fraction of phases.  相似文献   
86.
The technology of selective laser melting (SLM) is booming in all engineering applications today and tends to expand production of statically and dynamically loaded parts, not only for the prototypes but also for direct metal end–use parts. However, apart from design and type of loading, there still is a number of real material and technological parameters that contribute to the final quality of the produced parts and affect or improve the surface integrity and life of the parts. This paper expands the results and conclusions made in some previous works and presents all data from the tests expressed in their technological relations. The main conclusion is that a suitable machining process did not affect the surface integrity and fatigue of the tested samples, and the key role in assessments were the material structure, its homogeneity and defects.  相似文献   
87.
The metallurgical behaviour by Duplex stainless steels welding is affected by reducing the austenite proportion in weld and in the area adjacent to the fusion line of the molten metal bath and also by the precipitation of nitrides Cr2N, carbides M23C6 and intermetallic phases, σ, χ, Laves. The modalities for obtaining a quantitative ratio of the two phases (Austenite/Ferrite) close to that of the base metal (~50 % Austenite and 50 % Ferrite) aims to adjust the chemical composition of the weld by selecting a filler material with a higher nickel content (the element which beside nitrogen promotes the austenite formation), the heat cycle control of the welding process and the application of a post‐welding solution treatment. The present paper explores the effect of such heat treatment on balance restoring between austenite and ferrite and the reduction of the alloying elements segregation phenomena. By optical and scanning electron microscopy examinations and also X‐ray diffraction analyses the microstructural changes induced by the applied treatment are highlighted and by impact toughness and static tensile tests is demonstrated the positive effect of the heat treatment onto the ensuring of the welded joints quality.  相似文献   
88.
The paper presents the experimental studies on the enhanced comprehensive properties of Cr4Mo4V bearing steel using ultrasonic surface rolling process. Considerable improvements in mechanical properties and rolling contact fatigue performance are achieved in the present study, accompanied by the characterization of surface microstructures. The ultrasonic surface rolling process promotes the formation of fine nanocrystalline structures and nano-sized elongated grains with severe deformation, leading to the increasing residual stress, micro-hardness and high temperatures hardness. The crack propagation and delamination pit in the surface after ultrasonic surface rolling process is inhibited, further enhancing the rolling contact fatigue life of Cr4Mo4V bearing steel.  相似文献   
89.
The work‐hardening response and mechanical properties of dual phase steels originated from different initial microstructures under low and high martensite volume fractions were investigated using a typical carbon‐manganese steel. The modified Crussard‐Jaoul analysis was used for studying the work‐hardening stages and the deformation behavior of ferrite and martensite. It was revealed that the initial martensitic microstructure before intercritical annealing is much better than the full annealed banded ferritic‐pearlitic and spheroidized microstructures in terms of work‐hardening capacity and strength‐ductility trade off. By increasing the amount of martensite, via intercritical annealing at higher temperatures, the ductility decreased but the tensile toughness of dual phase steels increased toward reaching the domain of extra‐advanced high‐strength steels due to the enhancement of work‐hardening rate.  相似文献   
90.
High strength to weight ratio of aluminium reinforced as metal matrix composites is a well known material used in automotive application. The effects of recycled aluminium chips AA7075 with amorphous silica by rice husk ash on the physical properties and microstructure were investigated. Recycled aluminium chip AA7075 was reinforced with agro waste of amorphous silica rice husk ash i. e., 2.5 %, 5 %, 7.5 %, 10 % and 12.5 %. Samples of these metal matrix composites were prepared by cold compaction method due to the lower energies consumption and operating cost compared to conventional recycling by casting. Physical testing of density, apparent porosity, water absorption and hardness tests of the metal matrix composites samples were examined in the current study. The density of metal matrix composites was increased up to 5 % of amorphous silica, and then decreased with increasing mass fraction of amorphous silica. Porosity and water absorption of metal matrix composites were significantly consistent at increasing mass fraction of amorphous silica, while the hardness of metal matrix composites was increased at increasing amorphous silica. Consequently, the microstructures of metal matrix composites were observed via optical microscope to analyze the dispersion of the reinforced composites. The microstructures of metal matrix composites were found non‐homogeneous and random distribution of amorphous silica and aluminium chip AA7075 compared to 100 % recycled aluminium chip AA7075. Based on investigation to aluminium reinforced rice husk ash composites, it has good potential to improve the material behavior of metal matrix composites by appropriate composition amorphous silica to composite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号