首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1575篇
  免费   145篇
  国内免费   35篇
电工技术   5篇
综合类   45篇
化学工业   1134篇
金属工艺   16篇
机械仪表   34篇
建筑科学   18篇
矿业工程   1篇
能源动力   5篇
轻工业   226篇
水利工程   2篇
石油天然气   2篇
无线电   42篇
一般工业技术   97篇
冶金工业   8篇
原子能技术   17篇
自动化技术   103篇
  2024年   1篇
  2023年   54篇
  2022年   326篇
  2021年   270篇
  2020年   70篇
  2019年   44篇
  2018年   42篇
  2017年   36篇
  2016年   67篇
  2015年   70篇
  2014年   63篇
  2013年   85篇
  2012年   74篇
  2011年   82篇
  2010年   52篇
  2009年   79篇
  2008年   64篇
  2007年   51篇
  2006年   45篇
  2005年   29篇
  2004年   30篇
  2003年   15篇
  2002年   17篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1994年   12篇
  1993年   9篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有1755条查询结果,搜索用时 12 毫秒
991.
992.
Monitoring and tracking infection is required in order to reduce the spread of the coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, the development and deployment of quick, accurate, and sensitive diagnostic methods are necessary. The determination of the SARS-CoV-2 virus is performed by biosensing devices, which vary according to detection methods and the biomarkers which are inducing/providing an analytical signal. RNA hybridisation, antigen-antibody affinity interaction, and a variety of other biological reactions are commonly used to generate analytical signals that can be precisely detected using electrochemical, electrochemiluminescence, optical, and other methodologies and transducers. Electrochemical biosensors, in particular, correspond to the current trend of bioanalytical process acceleration and simplification. Immunosensors are based on the determination of antigen-antibody interaction, which on some occasions can be determined in a label-free mode with sufficient sensitivity.  相似文献   
993.
After a long limbo, RNA has gained its credibility as a druggable target, fully earning its deserved role in the next generation of pharmaceutical R&D. We have recently probed the trans-activation response (TAR) element, an RNA stem–bulge–loop domain of the HIV-1 genome with bis-3-chloropiperidines (B-CePs), and revealed the compounds unique behavior in stabilizing TAR structure, thus impairing in vitro the chaperone activity of the HIV-1 nucleocapsid (NC) protein. Seeking to elucidate the determinants of B-CePs inhibition, we have further characterized here their effects on the target TAR and its NC recognition, while developing quantitative analytical approaches for the study of multicomponent RNA-based interactions.  相似文献   
994.
Rice leaf folder Cnaphalocrocis medinalis is one of the most serious pests of rice in rice-planting regions worldwide. DsRNA-degrading nucleases (dsRNases) are important factors in reducing the efficiency of RNA interference (RNAi) in different insects. In this study, a dsRNase gene from C. medinalis (CmdsRNase) was cloned and characterized. The CmdsRNase cDNA was 1395 bp in length, encoding 464 amino acids. The CmdsRNase zymoprotein contains a signal peptide and an endonuclease NS domain that comprises six active sites, three substrate-binding sites, and one Mg2+-binding site. The mature CmdsRNase forms a homodimer with a total of 16 α-helices and 20 β-pleated sheets. Homology and phylogenetic analyses revealed that CmdsRNase is closely related to dsRNase2 in Ostrinia nubilalis. Expression pattern analysis by droplet digital PCR indicated that the expression levels of CmdsRNase varied throughout the developmental stages of C. medinalis and in different adult tissues, with the highest expression levels in the fourth-instar larvae and the hemolymph. CmdsRNase can degrade dsRNA to reduce the efficiency of RNAi in C. medinalis. Co-silencing of CmCHS (chitin synthase from C. medinalis) and CmdsRNase affected significantly the growth and development of C. medinalis and thus improved RNAi efficacy, which increased by 27.17%. These findings will be helpful for green control of C. medinalis and other lepidopteran pests by RNAi.  相似文献   
995.
996.
Pathogenic CUG and CCUG RNA repeats have been associated with myotonic dystrophy type 1 and 2 (DM1 and DM2), respectively. Identifying small molecules that can bind these RNA repeats is of great significance to develop potential therapeutics to treat these neurodegenerative diseases. Some studies have shown that aminoglycosides and their derivatives could work as potential lead compounds targeting these RNA repeats. In this work, sisomicin, previously known to bind HIV-1 TAR, is investigated as a possible ligand for CUG RNA repeats. We designed a novel fluorescence-labeled RNA sequence of r(CUG)10 to mimic cellular RNA repeats and improve the detecting sensitivity. The interaction of sisomicin with CUG RNA repeats is characterized by the change of fluorescent signal, which is initially minimized by covalently incorporating the fluorescein into the RNA bases and later increased upon ligand binding. The results show that sisomicin can bind and stabilize the folded RNA structure. We demonstrate that this new fluorescence-based binding characterization assay is consistent with the classic UV Tm technique, indicating its feasibility for high-throughput screening of ligand-RNA binding interactions and wide applications to measure the thermodynamic parameters in addition to binding constants and kinetics when probing such interactions.  相似文献   
997.
998.
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy; it is considered a network disorder associated with structural changes. Incomplete knowledge of the pathological changes in TLE complicates a therapeutic approach; indeed, 30 to 50% of patients with TLE are refractory to drug treatment. Non-coding RNAs (ncRNAs), acting as epigenetic factors, participate in the regulation of the pathophysiological processes of epilepsy and are dysregulated during epileptogenesis. Abnormal expression of ncRNA is observed in patients with epilepsy and in animal models of epilepsy. Furthermore, ncRNAs could also be used as biomarkers for the diagnosis and prognosis of treatment response in epilepsy. In summary, ncRNAs can represent important mechanisms and targets for the modulation of brain excitability and can provide information on pathomechanisms, biomarkers and novel therapies for epilepsy. In this review, we summarize the latest research advances concerning mainly molecular mechanisms, regulated by ncRNA, such as synaptic plasticity, inflammation and apoptosis, already associated with the pathogenesis of TLE. Moreover, we discuss the role of ncRNAs, such as microRNAs, long non-coding RNAs and circular RNAs, in the pathophysiology of epilepsy, highlighting their use as potential biomarkers for future therapeutic approaches.  相似文献   
999.
The recent development of mRNA vaccines against the SARS-CoV-2 infection has turned the spotlight on the potential of nucleic acids as innovative prophylactic agents and as diagnostic and therapeutic tools. Until now, their use has been severely limited by their reduced half-life in the biological environment and the difficulties related to their transport to target cells. These limiting aspects can now be overcome by resorting to chemical modifications in the drug and using appropriate nanocarriers, respectively. Oligonucleotides can interact with complementary sequences of nucleic acid targets, forming stable complexes and determining their loss of function. An alternative strategy uses nucleic acid aptamers that, like the antibodies, bind to specific proteins to modulate their activity. In this review, the authors will examine the recent literature on nucleic acids-based strategies in the COVID-19 era, focusing the attention on their applications for the prophylaxis of COVID-19, but also on antisense- and aptamer-based strategies directed to the diagnosis and therapy of the coronavirus pandemic.  相似文献   
1000.
The development of computational logic that carries programmable and predictable features is one of the key requirements for next-generation synthetic biological devices. Despite considerable progress, the construction of synthetic biological arithmetic logic units presents numerous challenges. In this paper, utilizing the unique advantages of RNA molecules in building complex logic circuits in the cellular environment, we demonstrate the RNA-only bitwise logical operation of XOR gates and basic arithmetic operations, including a half adder, a half subtractor, and a Feynman gate, in Escherichia coli. Specifically, de-novo-designed riboregulators, known as toehold switches, were concatenated to enhance the functionality of an OR gate, and a previously utilized antisense RNA strategy was further optimized to construct orthogonal NIMPLY gates. These optimized synthetic logic gates were able to be seamlessly integrated to achieve final arithmetic operations on small molecule inputs in cells. Toehold-switch-based ribocomputing devices may provide a fundamental basis for synthetic RNA-based arithmetic logic units or higher-order systems in cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号