首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   5篇
  国内免费   1篇
电工技术   7篇
综合类   11篇
化学工业   13篇
金属工艺   1篇
机械仪表   6篇
建筑科学   38篇
矿业工程   3篇
能源动力   1篇
轻工业   10篇
水利工程   13篇
石油天然气   2篇
无线电   9篇
一般工业技术   243篇
冶金工业   2篇
原子能技术   1篇
自动化技术   11篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   19篇
  2014年   14篇
  2013年   11篇
  2012年   7篇
  2011年   2篇
  2010年   2篇
  2009年   13篇
  2008年   12篇
  2007年   27篇
  2006年   9篇
  2005年   20篇
  2004年   24篇
  2003年   49篇
  2002年   20篇
  2001年   21篇
  2000年   17篇
  1999年   18篇
  1998年   9篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有371条查询结果,搜索用时 0 毫秒
31.
The method of implicit curve-fitting and explicit-calculation has been used for fast and stable calculations of thermodynamic properties of subcritical refrigerants. In order to extend that method to the critical pressure, a method of sectional implicit curve-fitting and explicit-calculation for refrigerant thermodynamic properties is introduced in this paper. The whole data range is divided into several subsections. The requirements on the continuity of thermodynamic properties and the first order derivative of thermodynamic properties in the intersection points of subsections are indicated, and the methods to meet the requirements are presented. Quadric equations are constructed instead of curve-fitting when no data can be given. With the source data obtained from REFPROP 7.1, explicit fast calculation formulae for thermodynamic properties of R410A, covering the saturated temperature of 213.15–344.51 K and superheat of 0–65 K, are given as an example. The calculation speeds of the formulae of R410A are more than 7000 times faster than those of REFPROP 7.1 while the total mean relative deviation of the fast calculation formulae from REFPROP 7.1 is only 0.04%.  相似文献   
32.
Comparison of R-290 and two HFC blends for walk-in refrigeration systems   总被引:1,自引:3,他引:1  
To help provide a clear understanding of the relative performance potential of HFCs (R-404A and R-410A) as compared to R-290 for walk-in refrigeration systems representing direct expansion commercial refrigeration systems with small charge, an experimental evaluation of the three refrigerants was investigated. To compare the environmental impact of refrigerants over the entire life cycle of fluid and equipment, including power consumption, the life cycle climate performance (LCCP) of the three refrigerants were evaluated based on measured data. The estimated LCCPs at various emission rates indicate that the LCCP of R-290 is always lower than that of R-404A. The LCCP of R-410A is lower than that of R-290 as long as the annual emission is kept below 10%. It was concluded that R-410A has less or equivalent environmental impact as compared to R-290 when safety (toxicity and flammability), environmental impact (climate change), cost and performance (capacity and COP) are considered.  相似文献   
33.
This paper presents modeling and experimental analyses of evaporators in “in situ” frozen-food display cabinets at low temperatures in the supermarket industry. Extensive experiments were conducted to measure store and display cabinet relative humidities and temperatures, and pressures, temperatures and mass flow rates of the refrigerant. The mathematical model adopts various empirical correlations of heat transfer coefficients and frost properties in a fin-tube heat exchanger in order to investigate the influence of indoor conditions on the performance of the display cabinets. The model is validated with the experimental data of “in situ” cabinets. The model would be a good guide tool to the design engineers to evaluate the performance of supermarket display cabinet heat exchangers under various store conditions.  相似文献   
34.
In this study full-scale experiments with two different conventional cooling-coils aimed for display cabinets were performed. Heat transfer and pressure drop on the liquid side for three different single phase secondary refrigerants were studied and compared to predictions by existing correlations. Predominantly, the laminar flow regime was studied. The results show that when predicting the heat transfer performance on the liquid side of a cooling-coil the Gnielinski correlation for thermally developing flow and uniform wall temperature boundary conditions (T) leads to good agreement for 0.0014 < x* < 0.017 if 50 < Re < 1700, assuming a new entrance length is formed after each U-bend. In addition, these entrance lengths must also be accounted for, when predicting the pressure drop on the liquid side of the cooling-coil. The uncertainty of measurement can be a problem in this type of investigations and this has been taken into consideration when analysing the results.  相似文献   
35.
The surface tensions of R290, R600a and R290/R600a mixture have been measured by the modified differential capillary-rise method. Twenty-two data points for R290 and 21 data points for R600a were obtained in the temperature range between 273 K and 354 K, and 43 data points for R290/R600a mixture on three isotherms of 278 K, 300 K and 320 K were obtained. The experimental uncertainties of temperature and surface tension are estimated to be within 20 mK and 0.2 mN m−1, respectively. Surface tension correlations as a function of temperature for pure R290 and R600a were formulated in the temperature range between 253 K and critical temperature, and the correlation as a function of the composition for R290/R600a mixture was discussed at 278 K, 300 K and 320 K. It is found that the surface tension for R290/R600a mixture can be reproduced by the simple mixing rule by mole fraction with the correlations of both pure components.  相似文献   
36.
Three methods for comparing cycle performance of working fluids, pure as well as non-azeotropic mixtures, are investigated for two applications and for two mixture pairs, HCFC22-CFC114 and HCFC22-HCFC142b, and their pure components. The methods differ in the way of calculating the heat exchange processes. They assume, respectively, equal minimum approach temperatures, equal mean temperature differences and equal heat transfer areas. Changes of coefficient of performance (COP) with composition are explained for all methods. It is shown that transport properties must be taken into account when making rigorous comparisons between working fluids. To predict the relations between fluids with high accuracy, one must use the method with equal heat transfer areas. By the method with equal mean temperature differences, the COP can be estimated with the same accuracy for mixtures as for pure fluids, and can be used for rough estimations of the COP level with different fluids. The method of equal minimum approach temperatures should be avoided for non-azeotropic mixtures.  相似文献   
37.
A study on the prediction of heat transfer coefficient (HTC) and pressure drop of refrigerant mixtures is reported. HTCs and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis. Results indicate that nucleate boiling is suppressed at qualities greater than 20.0% for all mixtures and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8.0–10.0% increase in HTCs. Some mixtures with large volatility difference exhibit as much as 55.0% reduction compared with R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32.0%) and reduced mass flow rates (23.0%). Other mixtures with moderate volatility difference exhibit 20.0–30.0% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall HTC of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10.0% in transport properties causes a change of less than 6% in heat transfer prediction.  相似文献   
38.
An equation of state for 1,1-difluoroethane (HFC 152a, CH3CHF2) has been developed on the basis of reliable experimental data including PVT, liquid Cp, and saturated-liquid-density data measured by our group. It is a non-dimensionalized virial equation whose functional form is the same as that originally developed for 1,1,1,2-tetrafluoroethane (HFC 134a) in our group. The effective range is for pressures up to 15 MPa, temperatures from 230 to 450 K, and densities to 1000 kg m−3. The equation represents reliable PVT measurements within ± 1% in pressure for the superheated vapour and supercritical fluid, while within ±0.5% in density for the compressed liquid. In addition, it should be noted that the equation represents the other essential thermodynamic properties including vapour pressures, saturated-liquid/ vapour densities, isobaric/isochoric specific heats and sound velocity in both the liquid and gaseous phase of HFC 152a.  相似文献   
39.
An 18-coefficient modified Benedict–Webb–Rubin equation of state of HFC-32 (difluoromethane) has been developed, based on the updated available PVT measurements, heat capacity measurements and speed of sound measurements. Correlations of vapor pressure and saturated liquid density are also presented. The correlations have been developed based on the reported experimental saturation properties data. This equation of state is effective both in the superheated gaseous phase and compressed liquid phase at pressures up to 70 MPa, densities to 1450 kg/m3, and temperatures from 150 to 475 K, respectively.  相似文献   
40.
A capillary tube is a common expansion device used in small sized refrigeration and air-conditioning systems. A generalized correlation for refrigerant flow rate in adiabatic capillary tubes is developed by implementing dimensionless parameters based on extensive experimental data for R-22, R-290, and R-407C measured in this study. Dimensionless parameters are derived from the Buckingham Pi theorem, considering the effects of tube inlet conditions, capillary tube geometry, and refrigerant properties on mass flow rate. The generalized correlation yields good agreement with the present data for R-22, R-290, and R-407C with average and standard deviations of 0.9 and 5.0%, respectively. Approximately 97% of the present data are correlated within a relative deviation of ±10%. Further assessments of the correlation are made by comparing the predictions with measured data for R-12, R-134a, R-152a, R-410A, and R-600a in the open literature. The correlation predicts the data for those five refrigerants with average and standard deviations of −0.73 and 6.16%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号