首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40630篇
  免费   4227篇
  国内免费   3408篇
电工技术   1326篇
综合类   1994篇
化学工业   8752篇
金属工艺   3462篇
机械仪表   1221篇
建筑科学   2402篇
矿业工程   736篇
能源动力   1432篇
轻工业   1624篇
水利工程   290篇
石油天然气   532篇
武器工业   515篇
无线电   4461篇
一般工业技术   14419篇
冶金工业   2046篇
原子能技术   2363篇
自动化技术   690篇
  2024年   196篇
  2023年   975篇
  2022年   1049篇
  2021年   1508篇
  2020年   1753篇
  2019年   1520篇
  2018年   1382篇
  2017年   1572篇
  2016年   1503篇
  2015年   1471篇
  2014年   2144篇
  2013年   2923篇
  2012年   2562篇
  2011年   3375篇
  2010年   2413篇
  2009年   2565篇
  2008年   2282篇
  2007年   2657篇
  2006年   2373篇
  2005年   2218篇
  2004年   1738篇
  2003年   1528篇
  2002年   1240篇
  2001年   912篇
  2000年   830篇
  1999年   578篇
  1998年   550篇
  1997年   393篇
  1996年   329篇
  1995年   262篇
  1994年   267篇
  1993年   206篇
  1992年   155篇
  1991年   162篇
  1990年   146篇
  1989年   126篇
  1988年   68篇
  1987年   54篇
  1986年   46篇
  1985年   43篇
  1984年   51篇
  1983年   30篇
  1982年   40篇
  1981年   14篇
  1980年   11篇
  1979年   4篇
  1974年   3篇
  1959年   15篇
  1955年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
1.
A method for contactless measurement of the shielding critical current density and its dependence on the external magnetic field is described and analyzed. The obtained values are compared with those measured resistively on two different samples. It is shown that the shielding critical current densityJ cs and the intergranular transport current densityJ cr are identical if the measurement conditions are similar. A degradation ofJ cs measured in the external field with AC ripple has been observed.  相似文献   
2.
针对碳素材料超声无损检测存在信噪比较低的问题,从自相关性出发分析了典型超声检测信号的组成成分,提出了在自相关分析的基础上的小波去噪思想,探讨了自相关分析和小波分析相结合的信号处理方法。利用此方法进行实际超声信号分析效果良好。  相似文献   
3.
一、基本原理自六十年代中期以来,中子活化瞬发γ射线元素分析技术(PNAA)得到人们广泛重视。与通常的中子活化分析(NAA)技术相比,它分析的是样品中的主要成分,若用同位素中子源,还可进行实时在线连续测定及现场分析。PNAA技术是用热中子与待测元素发生中子俘获反应,处于激发态的产物核在瞬间  相似文献   
4.
From chloromethylated polyimide, a useful starting material for modification of aromatic polyimides, a thermocurable transparent polyimide having acrylate side groups was prepared. In the presence of 1,8‐diazabicyclo[5,4,0]undec‐7‐ene, chloromethylated polyimide was esterified with acrylic acid to synthesize poly(imide methylene acrylate). The polymer was soluble in organic solvent, which makes it possible to prepare a planar film by spin coating. The polymer film became insoluble after thermal treatment at 230 °C for 30 min. Optical transparency of the film at 400 nm (for 1 µm thickness) was higher than 98 % and not affected by further heating at 230 °C for 250 min. Adhesion properties measured by the ASTM D3359‐B method ranged from 4B to 5B. Preliminary results of planarization testing showed a high degree of planarization (DOP) value (>0.53). These properties demonstrate that poly(imide methylene acrylate) could be utilized as a thermocurable transparent material in fabricating display devices such as TFT‐LCD. Copyright © 2004 Society of Chemical Industry  相似文献   
5.
Inorganic–organic hybrid materials are attracting a strong scientific interest mainly for their outstanding inherent mechanical and thermal properties, which can be traced back to the intimate coupling of both inorganic and organic components. By carefully choosing the experimental parameters used for their synthesis, chemically and thermally stable acrylate-based hybrid material embedding the zirconium oxocluster Zr4O4(OMc)12, where OMcCH2C(CH3)C(O)O, can be deposited as UV-cured films on aluminium alloys.

In particular, the molar ratios between the oxocluster and the monomer, the polymerisation time, the amount of photo-initiator and the deposition conditions, by using an home-made spray-coating equipment, were optimised in order to obtain the best performing layers in terms of transparency and hardness to coat aluminium alloy (AA1050, AA6060 and AA2024) sheets. Furthermore, it was also evaluated whether the hybrid coatings behave as barrier to corrosion.

Several coated samples were prepared and characterised. Environmental scanning electronic microscopy (ESEM) and scratch test were used to investigate the morphology of the films and to evaluate their scratch resistance, respectively. Electrochemical impedance spectroscopy (EIS) was performed in order to evaluate if the coatings actually protect the metallic substrate from corrosion.

In order to measure shear storage modulus (G′) and loss modulus (G″) of the materials used for coatings, bulk samples were also obtained by UV-curing of the precursors solution. Dynamical mechanical thermal analysis (DMTA) was performed in shear mode on cured disks of both the hybrid materials and pristine polymer for comparison. The values of Tg were read off as the temperatures of peak of loss modulus. The length and mass of all the samples were measured before and after the DMTA analysis, so that the shrinkage of the materials in that temperature range was exactly evaluated.  相似文献   

6.
This is part II of a study reported earlier on a method to characterize the air flow and water removal characteristics during vacuum dewatering. This article presents experimental data and analysis of results from the use of a cyclically actuated vacuum dewatering device for removing moisture from wetted porous materials such as paper with the intermittent application of vacuum and accompanying air flow though the material. Results presented include sheet moisture content as a function of residence time and hence water removal rate under a variety of process conditions. Also, experimental results on air flow through the wet porous structure and hence the role and importance of air flow during vacuum dewatering are presented. Vacuum dewatering process conditions include exit solids content between 11 and 20% solid under applied vacuum conditions of 13.5 to 67.7 kPa (4 to 20 in. Hg). Regression analysis indicated that the exit sheet moisture content exhibited a nonlinear relationship with residence time with exit solids reaching a plateau after a certain residence time. Final moisture content correlated linearly with the average overall flow rate of air through the paper sample and the basis weight of the material.  相似文献   
7.
Current methods in alleviating the wall deposition problem in spray drying emphasize mainly controlling the stickiness of the drying particles and less attention is placed on the properties of the dryer wall. In this experimental study, the effect of wall surface properties on the deposition mechanism has been investigated. Properties considered in classifying different wall materials were surface energy, roughness, and dielectric properties. The model solution contained sucrose, representing low-molecular-weight sugars commonly encountered in spray drying of fruit and vegetable juices. The effect of wall properties on deposition was explored at different drying rates producing particles of different surface rigidity. Larger surface roughness produced higher deposition fluxes for particles with high impact velocity and moisture. Surface energy and surface roughness were found to have no significant effect for dry rigid particles at the middle and bottom elevation of the drying chamber. However, material with lower surface energy (Teflon) exhibited less deposition for rubbery particles at such elevations. Analysis shows that dielectric wall material (Teflon) tends to enhance deposition of dry particles because of attrition at the surface. Higher wall temperature was found to produce slightly more deposition. The results of this work give a general indication of the effect of wall material on the deposition problem and provide the fundamental understanding for further studies along this line. Proper selection of dryer wall material will provide potential alternatives for reducing the deposition problem.  相似文献   
8.
TiO2 hybrid molecular imprinted polymer (MIP) for ethofumesate using methacrylic acid (MAA) as the functional monomer and silane coupling agent 3-(trimethoxysilyl) propylmethacrylate (KH570) as organic–inorganic connective bridge was synthesized via photo-excitation method. Hydrogen bond was proved to act between MAA and ethofumesate for pre- and post-polymerization binding properties as testified by UV spectrometric method. KH570 modified TiO2 nanoparticles were prepared via sonochemical reaction, which can accelerate hydrolysis, increase collision chance for the reactive system and improve the dispersion of the nanoparticles. Scanning electron microscope (SEM), transmission electron microscope (TEM), binding and the adsorption kinetics experiments as well as thermogravimetric analysis (TGA) were employed for characterization. The results indicated that the hybrid MIP revealed a larger surface area and more ordered imprinting cavities with improved thermal stability compared to organic-only MIP. Furthermore, faster adsorption kinetics and enhancive adsorption capacity were achieved, which made it promising in chemical sensor applications.  相似文献   
9.
A systematic investigation of the magnetic and transport properties of Ti doped La0.67Ca0.33MnO3 was reported. The Ti substitution for Mn ions results in a reduction in ferromagnetism and conductivity. The metal-insulator transition temperature is close to Curie temperature which decreases from 274 to 82 K as x increases from 0 to 0.17. The most important effect of Ti doping is to introduce spin clusters in the samples due to the distortion of local lattice and the inhomogeneous magnetic structure induced primarily by the random distribution of Mn ions. A maximum magnetoresistance ratio as large as 90% in 1 T at 122 K was obtained for the sample with x =0. 055, which is four times larger than that obtained for LCMO sample at 272 K. There is a remarkable field-history dependent MR in the cooling process for the doped samples while such phenomenon disappears in the warming run. The resistivity follows well the variable range hopping behavior in paramagnetic state. Both the size effect and spin dependent hopping of carriers between the spin clusters should be considered in this system.  相似文献   
10.
Enhanced matrix-filler adhesion is realized after filler treatment with a surface treatment process. The hydrosol/coupling agent treatment was applied to a wide range of inorganic and organic fillers, and adhesion to a variety of matrix resins was improved. Scanning Electron Microscopy (SEM) was used to determine the locus of failure in the filled systems. The locus of failure shows the relative degree of adhesion between the filler and the polymer matrix. Significant improvement in adhesion in humid environments is also observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号