首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5533篇
  免费   2128篇
  国内免费   271篇
电工技术   65篇
综合类   141篇
化学工业   1977篇
金属工艺   242篇
机械仪表   69篇
建筑科学   41篇
矿业工程   147篇
能源动力   420篇
轻工业   393篇
水利工程   3篇
石油天然气   72篇
武器工业   23篇
无线电   1117篇
一般工业技术   2954篇
冶金工业   176篇
原子能技术   25篇
自动化技术   67篇
  2024年   65篇
  2023年   293篇
  2022年   318篇
  2021年   585篇
  2020年   640篇
  2019年   697篇
  2018年   683篇
  2017年   791篇
  2016年   683篇
  2015年   638篇
  2014年   672篇
  2013年   553篇
  2012年   433篇
  2011年   282篇
  2010年   141篇
  2009年   80篇
  2008年   46篇
  2007年   62篇
  2006年   44篇
  2005年   35篇
  2004年   34篇
  2003年   24篇
  2002年   11篇
  2001年   19篇
  2000年   12篇
  1999年   19篇
  1998年   18篇
  1997年   3篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1951年   9篇
排序方式: 共有7932条查询结果,搜索用时 31 毫秒
41.
This work studied the effects of adding short basalt fibers (BFs) and multi-walled carbon nanotubes (MWCNTs), both separately and in combination, on the mechanical properties, fracture toughness, and electrical conductivity of an epoxy polymer. The surfaces of the short BFs were either treated using a silane coupling agent or further functionalized by atmospheric plasma to enhance the adhesion between the BFs and the epoxy. The results of a single fiber fragmentation test demonstrated a significantly improved BF/epoxy adhesion upon applying the plasma treatment to the BFs. This resulted in better mechanical properties and fracture toughness of the composites containing the plasma-activated BFs. The improved BF/epoxy adhesion also affected the hybrid toughening performance of the BFs and MWCNTs. In particular, synergistic toughening effects were observed when the plasma-activated BFs/MWCNTs hybrid modifiers were used, while only additive toughening effects occurred for the silane-sized BFs/MWCNTs hybrid modifiers. This work demonstrated a potential to develop strong, tough, and electrically conductive epoxy composites by adding hybrid BF/MWCNT modifiers.  相似文献   
42.
A facile method to synthesize nanoscale graphene oxide (GO) with controllable interlayer spacing was carried out using two-step oxidation process and much less acid to improve the efficiency of the oxidation. The X-ray diffraction results demonstrated that GO had been successfully prepared from graphite because of disappearance of characteristic peaks of pristine graphite at about 2θ = 26.5° along with appearance of a sharp major peak of GO at about 2θ = 9.4°. The increased basal spacing d001 of as-prepared GO could reach as high as 9.39 Å, suggesting higher degree of oxidation than that prepared by the classical Hummers' synthesis, and characterization results from Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy further confirmed this conclusion. The influence of GO on anti-corrosion performance of nanocomposite coatings composited with the 2,5-dimethoxyaniline (DMA) conductive polymer was examined via potentiodynamic polarization curve tests in 3.5 wt% NaCl aqueous solution. The results demonstrated that the incorporation of GO significantly decreased the corrosion current density (icorr = 2.62 μA/cm2) in the case of GO-PDMA coating, reflecting excellent physical isolation of GO and its synergistic effect with PDMA against the infiltration of water and corrosive electrolyte.  相似文献   
43.
In this article, modification of carbon fiber surface by carbon based nanofillers (multi-walled carbon nanotubes [CNT], carbon nanofibers, and multi-layered graphene) has been achieved by electrophoretic deposition technique to improve its interfacial bonding with epoxy matrix, with a target to improve the mechanical performance of carbon fiber reinforced polymer composites. Flexural and short beam shear properties of the composites were studied at extreme temperature conditions; in-situ cryo, room and elevated temperature (−196, 30, and 120°C respectively). Laminate reinforced with CNT grafted carbon fibers exhibited highest delamination resistance with maximum improvement in flexural strength as well as in inter-laminar shear strength (ILSS) among all the carbon fiber reinforced epoxy (CE) composites at all in-situ temperatures. CNT modified CE composite showed increment of 9% in flexural strength and 17.43% in ILSS when compared to that of unmodified CE composite at room temperature (30°C). Thermomechanical properties were investigated using dynamic mechanical analysis. Fractography was also carried out to study different modes of failure of the composites.  相似文献   
44.
Composite adsorbent films with amine and hydroxyl functionalities were synthesized from chitosan (CS), polyvinyl alcohol (PVA), and amine-modified carbon nanotubes (a-MWCNT) by solvent casting method. Weight proportions of CS to PVA and weight percent of a-MWCNT were optimized to achieve highest chromate removal capacity. Structural characteristics of the composites were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. Accordingly, incorporation of a-MWCNT to CS/PVA structure resulted in the generation of nanochannels, which enhanced adsorption capacity. Moreover, the composite comprising 0.4% wt. a-MWCNT provided over 99% of Cr (VI) removal from 50 mg L−1 Cr (VI) solution within five minutes of contact time. Redlich–Peterson and Radke–Prausnitz isotherm models provided the highest conformity to adsorption data. Maximum chromate sorption capacity of CS/PVA/a-MWCNT composite film was determined as 134.2 mg g−1 being 172% higher than that of CS/PVA. Regeneration was best achieved in 1.0 M NaOH and the composite was shown to retain at least 70% of its original capacity after five consecutive adsorption–desorption cycles.  相似文献   
45.
Up to now, it is a major challenge to protect leading edge of the blades from solid particle erosion. Herein, we propose a structure optimization strategy to fabricate non-woven (NW) enhanced thermoplastic polyurethane nanocomposite films (thermoplastic polyurethane [TPU] - NW@G/Cx) with “sandwich - like” structure by hot pressing technology. TPU NW/graphene nanoplates/carbon nanotube (NW@G/Cx) interlayer film were first fabricated by spraying method. Then the interlayer film was laminated between TPU films to fabricate nanocomposite films. Such prepared TPU - NW@G/Cx film shows excellent solid particle erosion resistance and high-tensile strength. For example, the “steel-and-mortar” structure of NW fabric in TPU film results in high-tensile strength of 45 MPa and storage modulus of 21.2 MPa for TPU - NW@G/C1.0, increasing by 25% and 171% compared with original TPU film (35 MPa, 8 MPa), respectively. In addition, compared with pure TPU film, the “sandwich - like” structure endows TPU - NW@G/C1.2 with excellent solid particle erosion resistance and the thermal conductivity (0.251 W/m·K). These superior properties extends application of the TPU - NW@G/Cx film on wind turbine blades.  相似文献   
46.
Carbon fiber reinforced epoxy (CE) composite is ideal for a cryogenic fuel storage tank in space applications due to its unmatched specific strength and modulus. In this article, inter-laminar shear strength (ILSS) of carbon fiber/epoxy (CE) composite is shown to be considerably improved by engineering the interface with carboxyl functionalized multi-walled carbon nanotube (FCNT) using electrophoretic deposition technique. FCNT deposited fibers from different bath concentrations (0.3, 0.5, and 1.0 g/L) were used to fabricate the laminates, which were then tested at room (30°C) and in-situ liquid nitrogen (LN) (−196°C) temperature as well as conditioning for different time durations (0.25, 0.5, 1, 6, and 12 h) followed by immediate RT testing to study the applicability of these engineered materials at the cryogenic environment. A maximum increment in ILSS was noticed at bath concentration of 0.5 g/L, which was ~21% and ~ 17% higher than neat composite at 30°C and − 196°C, respectively. Short-term LN conditioning was found to be detrimental due to developed cryogenic shock, which was further found to be compensated by cryogenic interfacial clamping upon long-term exposure.  相似文献   
47.
Four series of polylactide (PLA) based composite films containing horizontally aligned few layer graphene (FLG) flakes of high aspect ratio and adsorbed albumin are prepared. The mechanical and thermal properties varies with percentage, dispersion degree and size of FLG flakes. Great improvement up to 290% and 360% of tensile modulus and strength respectively were obtained for the composite containing high lateral size of FLG at 0.17% wt, and up to 60% and 80% for the composite with very well dispersed 0.02% wt FLG. The composites of PLA and PEG-PLLA containing very well dispersed FLG flakes at 0.07% wt are ductile showing enhancement of elongation at break up to respectively 80% and 88%. Relatively high electrical conductivity, 5 × 10−3 S/cm, is measured for PLA film charged with 3% of FLG.  相似文献   
48.
Conducting polymer composites constituted by co-continuous poly (vinylidene fluoride) (PVDF)/ ethylene- vinyl acetate copolymer (EVA) blends with multiwalled carbon nanotube (CNT) were prepared by melt mixing using different procedures. The effect of the master batch approach on the conductivity, morphology, mechanical, thermal and rheological properties of PVDF/EVA/CNT nanocomposites was compared with that based on one step mixing strategy. The selective extraction experiments revealed that CNT was preferentially localized in the EVA phase in all situations, even when PVDF@CNT master batch was employed. Nanocomposites prepared with EVA@CNT master batch displayed higher conductivity, whose value reached around 10−1 S m−1 with the addition of 0.56 vol% of CNT. The better electrical performance was attributed to the better distribution of the filler, as indicated by transmission electron microscopy and rheological behavior. The electrical and rheological behavior were also investigated as a function of the CNT content.  相似文献   
49.
The structure evolution of silk fibroin (SF) in the nanocomposite films with graphene oxide (GO) was investigated and related to the enzymatic degradability and release property. The interaction with GO was found to induce conformation transition of SF from random coil to β-sheet. However, the surface binding constrained the rearrangement of the silk chains, leading to a decrease of β-sheet when GO content was more than 1.0%. The crystal structure of SF played a key role in the degradation of GO/SF composites. The preferential degradation of the hydrophilic blocks resulted in a faster degradation of SF films with higher β-sheet content. The addition of GO to SF matrix led to a slower release and a reduction of the burst release of RhB, the model compound. The release profile was well fitted to the Rigter–Peppas equation, from which the characteristic constant decreased and the diffusional exponent increased with increasing GO content but quickly leveled off when GO content was more than 1.0%. Degradation of the composites had little influence on the characteristic constant of RhB release, however, led to an increased diffusional exponent, which was more evident for the composites with higher β-sheet content.  相似文献   
50.
Sustainable development strategy has aroused a great interest in biomass resources as alternative raw materials. A kind of biomass-derived poly(butylene succinate) (PBS), has been developed as porous foams to reduce resource exhaustion and meet lightweight demands. For fire-safety in-service, graphene oxide (GO) was functionalized by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to combine flame-retardant elements and heat-barrier function. Hence, a very low loading level of P-containing GO as only 5 wt% could reduce peak heat release rate (pHRR) and total heat release (THR) of PBS-based foams by 58.5% and 22.3%, respectively. Meanwhile, N-/P-doped mesoporous char with a specific surface area of 136 m2/g, which derived from combustion of flame-retardant foaming PBS, contributes to a potential of energy storage applications in the capacitor or the anode of Li-ion battery with long-term stability. Overall, the sustainability of bio-based polyester could integrate lightweight of foaming, and be extended to utilization after use via facile combustion inspired by flame-retardancy design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号